

Advanced Roots Vacuum Pumps for High Vacuum Extraction in Industrial Settings

Basic Information

- Place of Origin:
- Brand Name:
- Minimum Order Quantity:
- Price:
- Packaging Details:
- Payment Terms:

China

Aipu

T/T, L/C

1

Product Specification

- Flow Range:
- Material:
- Models:
- Pressure:
- Highlight:
- 0.45-452.4m³/min HT250 RR 9.8kPa-58.8kPa
- industrial roots vacuum pumps, industrial roots type vacuum pump, industrial settings roots vacuum pumps

Our Product Introduction

Advanced Roots Vacuum Pump for High Vacuum Extraction in Industrial Settings

Product Features

Product Overview

The core features of the Aipu RR Roots vacuum pump include high vacuum degree, oil-free operation, compact structure, fast start-up, wide pressure range, and good dynamic balance performance. These characteristics make Roots vacuum pumps widely used in many fields.

Key Technical Features

High vacuum degree: Roots vacuum pump can quickly extract gas and generate large airflow, with a maximum vacuum degree of up to a high level, suitable for applications that require high vacuum degree.

Oil free operation: Roots vacuum pumps do not require lubricants to come into contact with the working gas, making them suitable for applications that require high gas purity, such as the food and pharmaceutical industries.

Compact structure: The Roots vacuum pump has a relatively compact structure, occupies a small area, and is suitable for situations with limited space.

Fast start-up: Roots vacuum pumps have the characteristics of low noise and small vibration, fast start-up, and low operation and maintenance costs.

Wide pressure range: Roots vacuum pumps have a high pumping speed over a wide pressure range, making them suitable for situations that require rapid pumping.

Good dynamic balancing performance: The rotor of the Roots vacuum pump has a symmetrical shape, good dynamic balancing performance, stable operation, and is suitable for continuous production lines.

Key Advantages

Extremely quiet operation supports use in noise sensitive industrial environments

Compact and space saving design simplifies installation in small equipment spaces

Efficient performance maximizes energy savings and reduces operating costs

Roots vacuum pump does not use any lubricating oil during operation, avoiding oil pollution problems. Its structural design ensures smooth operation and low maintenance costs, making it suitable for applications that require high gas purity

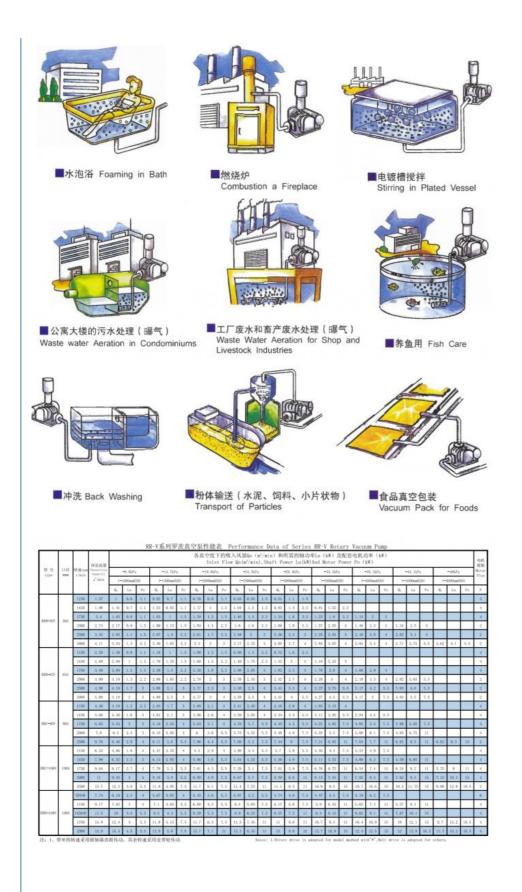
Scope of application

It is suitable for sewage treatment industry, petrochemical industry, food and drug industry, textile industry, metallurgy industry, cement and construction materials industry, printing and dyeing industry and other industries.

Market Distribution

We have 42 offices throughout the country, in addition to Taiwan Province, 33 provinces in the country's ad-ministrative regions have a sound sales and service network. We can provide you with pre-sale, in-sale and after-sales service in a timely and convenient manner, understand your needs, and constantly improve the service and quality system while meeting the customized needs of customers.

High Performance Aerodynamic Design Methodology for Wide Service Conditions


By studying the influence of impeller and volute flow on efficiency and working stability, the R&D team proposed a flow control method and a pneumatic optimization design method to improve the performance of the main engine, which greatly improved the efficiency of the main engine.

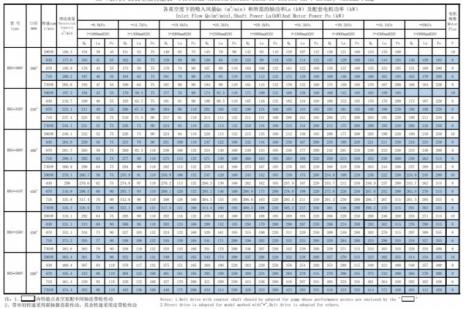
Manufacturing & Equipment Base

has built laboratories, R& D buildings, processing workshops, etc., with internationally advanced and China leading high-precision processing equipment.

Examples of uses

			理论蔬菜				_			各真										(kW) <u>/</u> lotor				k#D				_			电极
間号 type		转进rpn r/ain	Theoretical Capacity		-9, 8kPi		-	-14.7kP			-19. 6kP			-24. StP		_	-29, 607			-34, 3kP	0	-	-39, 28P	8		-14. DiP			-1952'a		Note Plo
			* ¹ /min	(-	000mail	20)	-	1.500mil	20)	(~)	5000mml	20)	(=)	2500mall	20)	. (*	3000mali	30)	(-	0500mmil	200	(-	1000mil	20)	(=	4500mm10	200	(~	5000mall	200	
				Q.	La .	70	Q.	La.	Po	0,	La.	Po	θ.	La	Po	Q.	La	Po	Q.	La	70	Q ₁	La.	70	Q.	La	Po	Q ₁	la	79	7
		970%	11.1	8.92	2.8	4	8.32	3.7	6.5	8.07	4.6	7,5	1.6	5.65	7.5	1,2	6.5	11	6.85		11	6.52	8.4	11	6.07	9.3	11				ł
		1150	13, 2	-11	3, 3	4	10.4	4.4	5,5	10.1	5, 5	7,5	9.63	6, 6	11	9.23	7,7	11	8,88	8,8	11	8,55	9,9	15	8,14	ш	15				1
9D-125V	1251	145018	16.6	14.4	4.2	5,5	13.8	3.35	7,5	13.5	6.9	11	13	8.3	11	12.6		11	12.3		-15	12	12.5	15	11.6	11.9	_	11,1	15.3	18.5	1
		1750	20	17.9	5	7.5	17.3	6.7	11	17	8.4	11	16.5	10.1	15	16.1	11.7	15	15.8	13.4	18.5	15.5	15.1	18.5	15	16.8	22	14.5	18.5	22	-
_		2000	22.9	20.7		7,5	20.1	7,6	11	19.8	9,5	15	19.3	11.5	15		13, 4	18.5	18,6		18.5		17.2	-	17.9	19.2	22	17, 4	21, 1	30	
		970.01	13, 5	11	3.4	5.5	10.2	4.55	7.5	9.87	5.7	7.5	9.24	6.8	11	8.69	7.9	11	8.22	9.05	11	7.82	10.2	15							-
KD-1271	1251	1150	16	13.5	4	5.5	12.7		1.5	12.3	6,7	11	11.7	8	11	11.2		15	10.7	10.7	15	10.3	12	15	9.8	13.4	15	13.3			H
30-1271	125	1450-8	20, 2	17.7		7.5	16.9	6.7	3, 5	16.5	8,4	11	15.9	10.1	15	15.4	11.7	15	14.9	13.5	15	14.5	15.2	18.5	14	16.9	18.5	13.3	18.6	22	H
		2000	25.9	25.4	6.5	11	24.6	9,15	11	24.2	10	15	21.6	12.1	18.5	23.1	16.1	18.5	22.6	10.1	22	22.2	29.7	30	21.7	23.1	30	21	25.4	30	F
-		970%	16.9	13.8	4.3	5.5	12.9		1.5	12.5	7, 2	13	11.9	8.6	10.0	11.3		15.5	10.8	-	15		12.8	15	61. T	23.1	30	21	63.1	30	H
80-134 1		1150	20	17	5	7.5	16	6.7	11	15.6	8.4	11	15	10.1	15	14.4	10	15	11.9	13.4	10	10.2	15	18.5	12.8	16.8	22				E
	1254	1450.9	25.3	22.2	-	7.5	21.3	-	11	20.9	10.5	15	20.3	-	-	-	14.7	-	_	-	22	18.6	19	22	18	21.1	-	17.1	23.2	30	
		1750	30.5	27.4	1.5	11	26.5	10.1	15	26.1	12.6	15	25.5	15.2	18.5	24.9	17.7	22	24.4	20.3	30	23.8	22.8	30	23.3	21.4	30	22.3	28	37	
		2000	34.9	31.8	8.5	11	30.9	11.4	15	30.5	14.3	-	29.9	17.3	22	29.3		30	28.8	23.1	30	28.2	26	30	27.6	29	37	25.7	31.9	37	
-		970(8)	20.8	17.2	5.2	7.8	16.1	6.95	11	15.6	8.7	11	14.9	10.5	15	14.2	12.2	15	13.5	14	18.5	12.9	15.7	18.5	12.1	17.5	22				
		1150	24.6	21.2	6	7.8	20	8.1	11	19.5	10.2	15	18.8	12.3	15	18.1	14.4	18.5	17.4	16.5	22	16.8	18.5	- 22 -	16	29.6	30	15	22.7	30	F
00-1504 LI	150*	1450-8	31.1	27.5	1,5	. 11	26.4	10.1	15	25.9	12.7	18.5	25.2	15.4	18.5	24.5	18	22	23.8	20.6	30	23.2	23.2	30	22.4	25.9	30	21.4	28.5	.37	
		1750	37.5	31.9	9	11	32.8	12.2	15	32.3	15.3	18.5	31.6	18.5	22	30.9	21.6	30	30.2	24.8	30	29.6	28	37	28.8	31.2	37	27.8	34.3	-45	
		2000	42, 9	39.3	10.2	15	38.2	13.9	18.5	32.7	17.5	22	37	21.1	30	36.3	24.7	30	35.6	28.3	37	35	31.9	37	34.2	35.5	45	33.2	39.1	-45	
-		730/8	17, 1	14.1	4.8	5,5	13, 1	6.1	1.5	12.8	7,8	Ш	12.2	8,7	11	H.7	10.2	Ш	11, 2	11.6	-15	10.7	13, 1	15	10.1	14.6	18.5				
		970.01	22.7	19.7	6	7,5	18.7	8	Ш	18.4	10	15	17.8	11.8	15	17, 3	13.5	18.5	16, 8	15, 5	18.5	16.3	17.5	22	15.7	19.3	22	15,1	21	30	
10-1401	150	1170	27.4	24.4	1.5	11	23.4	9.75	11	23.1	12	15	22.5	14.3	18.5	22	16.5	22	21.5	18.8	22	21	21	30	20.4	23.3	30	19.9	25.6	30	
1. 111	130	1250	29, 2	26.3	8	11	25.3	10, 3	15	25	12.5	15	24.4	15	18.5	23, 9	17.5	22	23.4	20	22	22.9	22, 5	30	22.3	25	30	21.8	27.5	37	
		1350	31.6	28.6	8.5	11	27.6	п	15	27.3	13,5	18.5	26.7	16.3	18.5	26.2	19	22	25.7	21.5	30	25.2	24	30	24.6	26.8	30	24.1	29.5	37	
		145018	33.94	31.9	9.6	11	29.9	12.3	18.5	29.6	1.5	18.5	29	18	22	28.5	20.9	- 30	28	23.6	30	27.5	28.3	30	28.9	29.3	37	26.4	32.2	- 37	

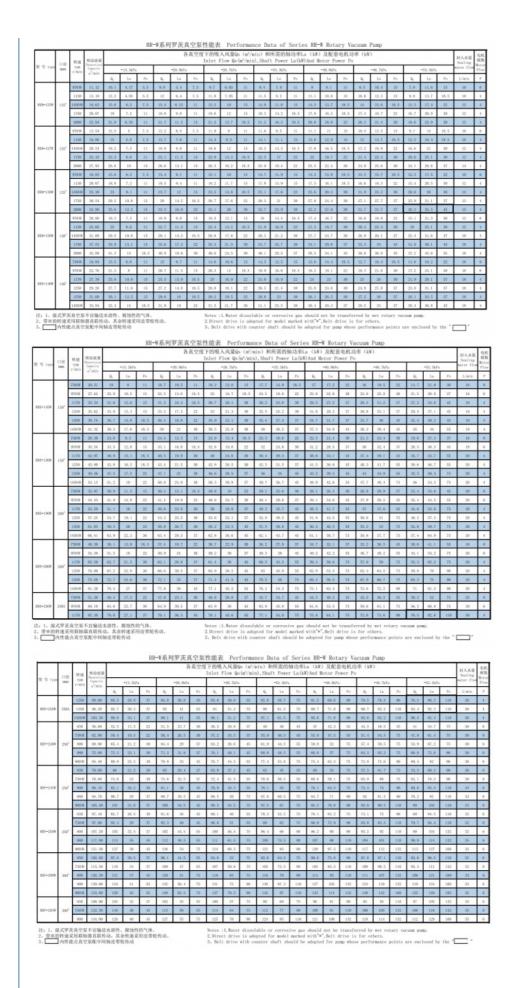

RR-V系列罗茨高空泉性能表 Performance Data of Series RR-V Rotary Vacuum Pump 各直空度下的吸入风量φ。(a²/min) 和所需的输动率La (MP) 及配套电机功率 (MR) mass

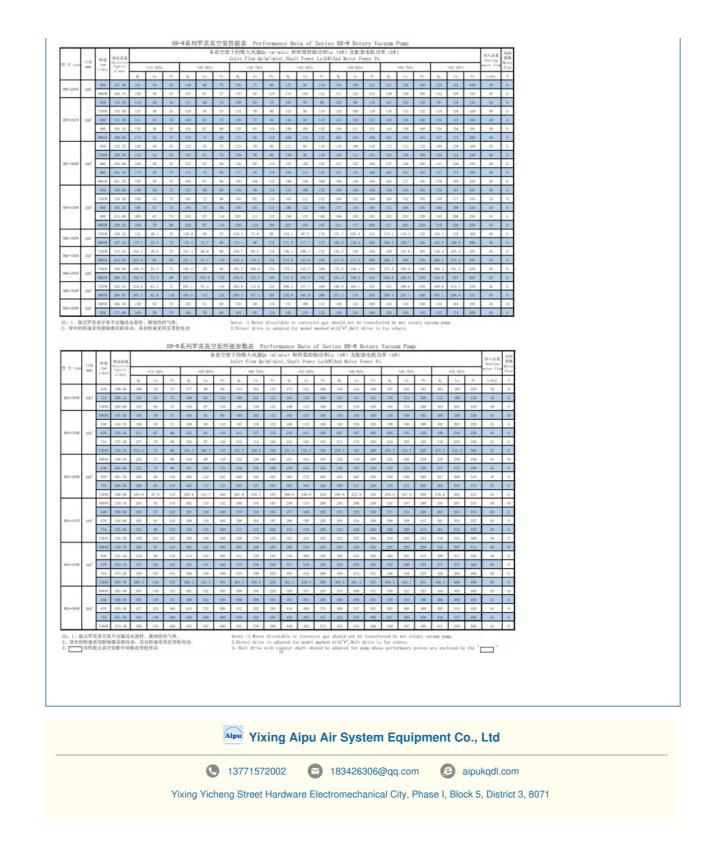

			理论夜景							άд										.k₩) ½ lotor				K# 2							电影
間 号 type	口径	料達rpe r/sin	Theoretical Capacity		-9.8kPa			-14.7kP			-19. 6kJ			-24. SkP			29.462			-34, 3kP	a		-39. 2kP	la .		-14, 11d	6		-1962-0		Moto Plo
- Theor			a ² /min	(=	1000eeal1	200	- (1500eeil	20)	(;	2000ami (200	(~	(500aal	20)	(*)	1000eesl1	200	(=	3500mili	20)	(-	1000anil	1200	(=	(SOOaal	200	(-	5000emil	(20)	1.11
				Q,	La	Po	0,	La	Po	Q ₂	La.	Po	Q ₃	La	Po	4,	la.	Po	0,	La	Po	Q.,	La	Po	Q ₂	La	Po	Q.,	la	Po	- P
		730/86	20.8	17,4	5,3	7.5	16.2	7,3	11	15, 8	9,2	11	15.1	10.7	15	14, 4	12.1	15	13,9	18,9	18.5	13.4	15.5	18.5	12.8	17, 5	22				- 8
		970/8	27.6	24.2	1	11	23	9.25	11	22.6	11.5	15	21.9	14	18,5	21.2	16.5	18.5	20.7	18.8	22	20.2	21	30	19.6	28, 3	30	18.5	25.6	30	6
E=145V	1504	1170	33.3	29.9	5.5	-11	28.7	11.3	15	28.3	16	18.5	27.6	16.8	22	26.9	19.5	22	26,4	22.3	30	25.9	25	.30	25.3	27.8	37	24.6	30.5	37	
C-1454	1.50	1250	35.6	32, 2	9	11	31	12	15	30, 6	15	18.5	29.9	18	22	29, 2	21	30	28.7	24	30	38.2	27	30	27.6	30	37	26.9	33	37	
		1350	38.4	35	9.5	11	33.8	12.8	15	33.4	16	18.5	32.7	19.3	30	32	22.5	30	31.5	25,8	30	31	29	37	30.4	82, 3	37	29.7	35.5	-45	-
		145018	41.3	37, 8	10.6	15	36.6	16.1	18, 5	36, 2	17.6	22	35.5	21.1	30	34, 8	24.6	30	34.3	28, 1	37	33.8	31.5	37	33.2	35, 1	45	32.5	35.5	45	-
-		730/8	26.7	22.2	6.8	11	21	9	11	20.6	11.2	15	19.6	13.4	15	18,8	15.5	18.5	18,1	17.8	22	17.5	19.9	22	16.7	22, 2	30				1
		970/81	35.5	81	8.5	11	29.8	11.5	15	29.4	16.5	18.5	28.5	17.5	22	27.7	20.5	30	27	23.5	30	26.4	26.5	30	25.5	29.5	37	24.8	32.5	37	
RE-150V	150 ⁴	1170	42.8	38, 4	10	11	37.2	13.8	18,5	36, 7	17.5	22	35, 8	21	30	35	24.3	30	34,3	28,3	37	33.7	32	37	32.9	35, 5	-45	32.2	39	45	
a. 1994	1.00	1250	45.8	41.3	11	15	40.1	14.8	18,5	39.6	18.5	22	38.7	22.5	30	37, 9	26.5	30	37.2	30, 3	37	36.6	34	45	34,8	37.8	45	31L 1	41.5	55	
		1350	42.4	45	12	15	43.8	16	18.5	43.5	20	30	42.4	24.3	30	41.6	28.5	37	40.9	32.5	37	40.3	35,5	45	39.5	40.8	45	38.8	45.5	55	
		145016	53.1	48,7	13, 8	18.5	47.5	18,1	22	47	22.4	30	95.1	27	30	45, 3	31.5	37	44.6	35,8	.45	-01	-90, 1	55	43, 2	44.7	55	42.5	49.8	75	
		730/8	33.4	29	8.3	11	27, 4	11	15	26.6	13.6	15	25.3	16.5	18.5	24.2	19.4	30	23.2	22.1	30	22.3	24.8	30	21.2	27.7	87	19.7	30.6	37	2
		970.01	46.4	40	10, 5	15	38.4	14.3	18.5	37.6	18	22	36.3	21.8	30	35, 2	25.5	30	34.2	29.3	37	33, 3	33	37	32.2	36, 5	45	30, 8	-93	45	
RE-190V	mai	1170	53.6	49, 2	12,5	15	47.6	17	22	46, 8	21.5	30	45, 5	26	30	44, 4	30.5	37	42, 4	35	-45	42.5	39.5	45	41.4	-11	55	-60	48.5	55	1
	200	1250	57.2	52,8	13.5	18.5	51.2	18.3	22	50.4	23	30	-49.1	21.8	- 37	48	32.5	37	42	37.3	45	46.1	42	-55	-45	47	55	43.6	82	75	-
		1350	61.8	\$7,4	14.5	18.5	55,8	19.8	30	55	25	30	53.7	30	37	52, 6	35	-45	51.6	40, 3	45	50.7	45.5	55	49,6	50, 8	75	48.2	.55	75	
		1450%	66.4	68	16, 4	22	60, 4	22.1	30	59, 6	27.7	37	58, 3	33	87	57, 2	38.4	45	56.2	44.1	55	55, 3	49.7	55	54, 2	55, 4	75	52.8	60.9	75	1
		130/8	-93. 8	35, 4	9.7	15	33.8	13.1	18.5	33, 1	16.5	- 22	31.9	19.9	30	30.8	ZL 3	- 30	29.8	26.7	37	28.8	30.1	37	27.6	33. 5	37	28	36.9	45	. 8
	- 0	970/N	51.3	48,9	13	15	47.3	17.5	22	46, 6	22	30	45.4	26.5	37	44, 3	31	37	42, 3	35, 6	45	42.3	-40	55	41.1	44.6	55	39.5	-49	55	
RE-200V	2001	1170	65.5	60, 1	15	18.5	58.5	21.3	30	57,8	26	37	56.6	31.5	31	55, 5	37	45	54.5	42.5	-86	53.5	48	55	82.3	53, 5	75	50.7	.89	15	4
		1250	70	64.6	16	22	63	21.8	30	62.3	27.5	37	61.1	33.3	37	60	39	-45	59	45	55	58	51	75	56.8	57	75	55.2	63	75	-
		1350	75,5	70, 1	17	22	68,5	22, 5	30	67, 8	30	37	66,6	36	-45	65, 5	42	55	64,5	48,5	55	63.5	55	75	62, 3	61, 5	75	60, 7	.68	75	
		145018	81.1	75,7	18,9	30	74.1	25.8	30	73, 4	32.8	37	72.2	29, 3	45	71.1	45.7	35	70.1	82, 7	75	69.1	59.7	75	67, 9	66, 7	78	66.3	73.6	90	
		130/8	51.9	45, 3	11.6	15	43.3	16	18,5	42, 4	20.4	-	-91, 7	24.8	30	39, 5	29.2	37	38.1	33.5	27	36.9	37.9	-45	35.3	42.3	55	31.6	-45.7	55	
EE-250V	250	970/8	69.1	62, 5	15	18.5	60.5	21	30	59.6	27	37	57.9	32.5	45	56,7	38	-45	55,3	-44	55	54.1	50	55	\$2, 5	56	75	50, 8	62	25	
		1170	81.3	76, 7	18	22	74.7	25	30	73, B	32	37	72.1	29	55	70.9	-06	35	69.5	53	75	68.3	60	75	66.7	67	75	65	74	90	4

RR-V系列罗茨真空泵性能表 Performance Data of Series RR-V Rotary Vacuum Pump

			理论说是							各真							所需的 wer 1							k₩D							电极
型号 type	口径 mea	vi進rpe r/min			-9.8kPa			14. TkP	· .		-19. 65P	5		-24.5kP	8		-29. &P	8		-34.3kP	8		-39. 232	a		-14.1M	'a		-19kPa		Moti Pla
r Jihn		1,1000	a2/min	(-	1000aali	200	(-	500mmH2	300	(-)	2000aadH	200	(-	2500emH	20)	(-	-3000emH	200	(-	3500aaiR	200	(-4000aaiR20)			(=4500miR20)			(-	5000mail	200	1.0
		-		9	La	Po	Q.	Lo	Po	Q.	La	Po	Q.	La	Po	0,	La	Po	Q.	La	Po	Q	La	Po	Q ₁	La	Po	0,	La	Po	1
		1250	89	82, 4	20	- 20	80, 4	27, 5	37	79.5	35	45	77,8	42.5	55	76.6	50	75	75.2	87	75	74	64	75	72.4	71.5	90	70.7	79	90	
85-250V	2564	1350	96.2	89, 6	21	30	87.6	- 29	37	86.7	37	-45	85	-45	55	83, 8	53	75.	82.4	61	75	81.2	69	- 90	79.6	77.5	90	77.9	85	110	
		1450/8	103.3	96.7	23.4	30	94.7	31.9	37	93.8	40.5	55	92.1	49.1	55	90.9	57.7	75	89.5	66.3	75	88.3	74.9	90	86.7	77.6	90	85	93.2	110	
		650	56	49.6	13	18.5	47, 4	17.5	22	46.6	22	30	45.1	27	37	43.8	32	-45	42.5	38.5	-45	41.4	-41	55	39.9	-46	55	38.1	51	75	
		730%	62.9	56, 5	-14	18, 5	54.3	19, 5	30	53, 5	25	- 30	52	30.5	37	50.7	36	-45	49.4	-41	55	48.3	- 46	- 55 -	45.8	5L.5	75	-45	57	75	1
RP-240V	250"	800	68.9	62, 5	16	22	60.3	21.5	30	59, 5	27	37	58	33	45	56.7	39	55	55.4	-65	- 55	51.3	51	75	52.8	56.5	75	51	-62	75	L
		880	75.8	60.4		22	67.2	23.5	30	66.4	30	37	64.9	36.5	45	63.6	-43	55	62.3	-	75	61.2	56	75	59.7	62.5	75	57.9	-09	90	Ļ
		99010	84.4	78	19	20	75, 8	- 26	37	75	33	45	73.5	40.5	55	72.2	-48	75	70.9	55	75	69.8	62	75	68.3	-09	73	95.5	76	90	L
		650	70	61, 9	-	22	59, 3	22	30	58, 3	28	37	56.4	33, 5	45	54, 8	39	- 55	51.3	45	- 55	51, 8	51	75	49,8	57	75	47, 5	63	75	Ļ
		730座	78,6	70, 5	17	22	67.9	24	30	66, 9	31	37	65	37.5	45	63.4	-64	- 55	61.9	50.5	75	60.4	57	75	58.4	63.5	75	56.1	70	90	ł
8F~245V	250'	800	86.1	78	19	30	75.4		31	74.4	34	- 45	72.5	-41	55	70, 9	48	75		55.5	75	67.9	63	75	65.9	70	90	61.6	11	90	₽
		890	94.7	86, 6	21	30	84	29	37	83	37	45	81.1	45	55	79.5	53	75	78	61	75	76.5	69	90	74.5	77	90	72.2	85	110	⊢
	-	99010	105.5	97, 4	-	30	91.8	32 26, 5	45	93, 8	41	55	91.9	50	75	90.3	59	75	88.8	68 55,5	75	87, 3	77 63	90 75	85.3 63	86 70,5	110	83	95	110	ł
		600 73010	87.1 97.8	76.2	19	30	78.5	_	31	72.4	31	45	81.1	41	55	68,5	- 08 - 54	75	77.5	80, 8	75	65.2	63 70	90	73.7	82.5	90	-			ł
85-250V	2501	800	107.2	96.2	21	30	50.6	20, 9	40	92.5	41	40	90.5	30	75	19, 2	54	75	85.9	62	90	85.3	70	90	83.1	82.0	110	80.4	95	110	t
00-2001	200	890	107. 2	107	26	37	105	35.5	45	103	- 45	- 55	101	35	75	99.1	- 65	75	97.4	75	90	95.8	85	110	91.8	95	-	91.1	105	132	t
		39016	131.3	120	29	37	118	40	55	114	51	75	114	61.6	75	112	72	90	110	83.5	110	108	95	130	107	106	132	105	117	132	t
-	-	650	102.6	92, 3	-	30	88.4	30, 5	37	86.9	39	45	84.2	- 48	55	81, 9	-	75	80	65.5	25	78	74	90	75.8	82.5	90	72.6	91	110	t
		73018	115.3	105	25	30	201	35	-45	99.6	45	55	96.9	51.5	75	95.6	64	75	92.7	73.5	90	90.7	83	110	88.5	93	110	85.3	103	132	t
8F-290V	3001	800	126.3	116	27	37	112	37, 5	45	110	-08	75	107	- 59	75	105	70	90	103	80.5	90	101	91	110	99.5	102	122	95.3	112	122	t
		890	139	128	30	37	125	41, 5	55	123	53	75	129	61.5	75	118	76	90	116	- 88	110	114	100	110	112	112	132	109	123	160	Г
		980後	154.8	144	33	55	341	46	55	179	59	75	136	72	90	.134	85	110	132	97.5	110	130	110	132	128	123	160	124	136	160	t
		650	108.9	97.3	23	30	93.5	32.5	45	92	42	55	89.3	51	75	87	60	75	85	69	90	83.2	78	90	81	87	110	76.6	96	110	t
8F-295V	3001	73010	122.3	110	26	37	397	36,5	45	105	47	- 75	102	57	75	99.7	67	-90	97, 7	77.5	90	95.9	88	110	91.4	- 98	110	-90	108	132	Γ
		800	134	122	29	37	119	40	55	117	51	75	114	62.5	75	112	74	.90	110	85	110	108	.96	110	106	107	132	101	118	132	Г

註: 带炭的转速采用原轴器监察传动, 其余转速采用皮带轮传动 Sotes: Direct drive is adopted for model marked with**, Belt drive is adopted for others.




内性能点真空泵配中间轴皮带轮传动 的转速采用联轴器直取传动,其余转速采用皮带轮传动

	0.85	转送	理论成果 Described					â)及配着 lotor Pr)					刻入永星 Sealing	相続
t ti type	-	rps r/sin	Copycity n ¹ /min	3	=13.3kPa			-20.0kPa			=26, 7kPa			=33, 3kPa			~40.0kPs			~46. TkPa			-53, 3kPa		sater fles	Ple
				4	La	Po	Q.,	La	Po	Q5	La .	Po	Q	La	Po	9	1.a	Po	Q ₁	La	Po	Q_	La	Po	L/min	1
		1150	1.57	1.12	0.95	1.1	1.09	1.12	LB	L.04	1.3	1.8	0.97	1.47	2.2	0.87	L.65	2.2	0.75	1.82	2.2	0. 57	1.99	3	4	
		1450	1.98	1.83	1.12	2.2	1.5	1.35	2.2	1.45	1.87	2.2	1.38	1.8	2.2	1.28	2	3	1.16	2.22	8	0.98	2, 45	- 3	5	
100-50V	50'	1750	2.00	1.95	1.3	2.2	1.92	1.58	2.2	L.87	1.85	2.2	1.8	2.1	3	1.7	2.37	3	1.58	2.65	3	1.4	2.9	4	6	
		2000	2.74	2.29	1.5	2.2	2.26	1.8	2.2	2.21	2.1	3	2.14	2.4	3	2,04	2.7	3	1.92	3	4	1.74	3.3	- 4	6	L
		2500	3,42	2,97	1.85	2.2	2.94	2,2	3	2,89	2.6	3	2.82	3	4	2,72	1.35	- 4	2.6	3.73	5.5	2.42	4.1	5, 5	6	
		2000	4.11	3,66	2.2	3	2, 63	2.67	3	1.58	3, 12	- 4	3, 51	3.6	4	3,41	4.05	5.5	3.29	4.5	5,5	3, 11	4, 95	5.5	6	L
		1159	2.29	1.69	1.22	1.5	1.64	L-45	2.2	1.57	1.7	2.2	1.49	1.95	2.2	1.39	2.2	3	1.24	2.45	3	0.99	2.7	4	5	
		1450	2.89	2,29	1.55	2.2	2.24	1.85	2.2	2.17	2.2	3	2.09	2.5	3	1.99	2.83	- 4	1.84	3.15	4	1.59	3, 42	4	6	L
880-658 65 ¹	- 412	1750	3.49	2.89	1.9	2.2	2.84	2.25	3	2.77	2.65	3	2.60	3.05	4	2.59	1.42	- 4	2.44	3.8	5.5	2.19	4.2	5.8	6	L
	-	2000	2.99	3, 29	2.08	3	3.34	2.8	3	3.27	2,95	4	3.19	3.4	4	5.09	1.83	5.5	2.94	4.25	5.5	2.69	4.7	5.5	6	L
		2500	4.98	4,38	2.6	3	4, 33	3,14	4	4.26	3.7	6, 5	4.18	4, 25	5.5	4,08	4.8	5.5	3,93	5, 35	7, 5	3.68	8.9	7,8	8	L
		2000	5.98	5,38	8.1	4.1	5, 33	3.77	5.5	5.26	4, 43	5.5	5, 18	5.1	1.5	5,08	5.75	7.5	4.93	6.42	7, 5	4.68	7.1	11	8	L
		1150	4.48	3.68	2.2	- 3	3, 58	2.7	4	3.38	3.2	4	3, 18	3.7	5,5	2, 88	4.2	5.5	2.58	4.7	5.5	1.98	5,18	7.5	6	L
		1450	5.65	4.86	2.75	4	4.76	3.35	- 4 -	4.55	- 4	5.5	4.36	4.6	5.5	4.06	5.25	7.5	3,76	5.9	7.5	3.16	6.5	7.5	. 8	L
DC-DW	801	1750	6,83	6, 63	3.3	- 4	5.93	4.06	5.5	5,73	4.8	5.5	5.53	5.6	7.5	5,23	6.45	7.5	4.93	7.1	11	4.33	7.82	-11	8	L
		2900	7.80	1	3.7	5.5	6.9	4.6	5.5	6.7	5, 43	7.5	6.5	6.3	7.5	6.2	7.15	11	5.9	8.02	11	5.3	8.9	11	8	L
		2500	9.76	8.96	4.65	3.5	8.85	5,7	7.5	8.66	6.8	T. B	8.46	7.9	Ш	K. 16	9	11	7.86	10, 1	15	7.26	11.1	1.5	8	L
		1199	6.33	5, 33	8	4	5.03	3.7	5.5	4.83	4.4	6.6	4.68	6, 12	7.5	4.33	5.83	7.5	4.03	6.62	7.6	3, 58	1.22	11	8	L
		1490	7.99	6,99	3,8	5.5	6.69	4.7	5.6	6.49	6, 58	7.5	6.29	6.45	2,5	5,99	7.35	11	5.69	8.24	-11	6.19	9.1	-11	9	L
SC-1008	100^{1}	1750	9.61	8,64	4.65	5.5	8.34	5,73	7.5	8.14	6.8	- 11	7.94	7.85	11	7.64	8.95	11	7.34	10	15	6.84	11.1	15	9	L
		2000	11,02	10	5,25	1,5	9.72	6.5	- 11	9.52	7.7	11	9.32	8,93	11	9	10.2	15	8.72	11.5	15	8,22	12.6	18.5	9	L
		2500	13, 77	12, 5	6.53	7,5	12.4	8,05	11	12.2	9.6	11	12	31,1	15	11.7	12.7	15	11.4	14.2	18.5	10.9	15,7	18.5	9	L
		STOR	7.74	6.9	3.24	5.5	6.7	4.1	5.5	6.5	4.95	7.5	6.2	5.8	7.5	5.9	6.65	-11	5.5	7.5	11	4.8	8, 37	Ш	9	
		1150	9.17	8.3	3.85	5.5	8.1	4.85	7.5	7.9	5,88	7.5	7.6	6.9	-11	7.3	7.93	11	6.9	8.93	11	6.3	9, 94	15	9	L
SD-1008	100*	145010	11.87	10.7	4.75	1.5	30.5	6.05	7.5	10.3	7.35	11	10	8.45	- 11	9.7	9.96	15	9.3	11.2	15	8.6	12.5	15	- 10	
		1750	13,96	18.2	5.8	7.5	13	7.35		12.7	8.9	. 11	12.4	10.5	15	12.1	12	15	11.7	13.6	18.5	11	15.1	18,5	10	

注:1、提式罗茨真空泵不宜输送水溶性、腐蚀性的气体。 2、带账的转速采用取轴器直联传动,其余转速采用皮带轮传动

Notes : 1. Water dissoluble or corresive gas should not be transferred by wet rotary vacuum pump. 2. Direct drive is adopted for model marked with "0". Belt drive is for others.

