China

Aipu

Negotiable

T/T, L/C

Export Standard Packaging

1

Corrosion Resistant Rotary Lobe Vacuum Pumps For Chemical Processing Specialized Withstand Aggressive Chemicals

Basic Information

- Place of Origin:
- Brand Name:
- Minimum Order Quantity:
- Price:
- Packaging Details:
- Payment Terms:

Product Specification

- Flow Range:
- Material:
- Models:
- Highlight:
- 0.84-35.93m³/min HT200 SSR corrosion resistant rotary lobe vacuum pumps,

corrosion resistant rotary lobe vacuum pump, chemical processing rotary lobe vacuum pump

Our Product Introduction

Corrosion-Resistant Rotary Lobe Vacuum Pump for Chemical Processing.Specialized materials withstand aggressive chemicals, fumes, and other harsh conditions.

Product Features

Product Overview

Engineered to withstand the demanding operating environments of chemical processing facilities, this corrosion-resistant rotary lobe vacuum pump delivers reliable, long-lasting performance even when exposed to aggressive chemicals, vapors, and other harsh conditions. Leveraging specialized materials and a robust, oil-free design, this vacuum pump is an ideal solution for a wide range of chemical, petrochemical, and related industrial applications where equipment durability and process integrity are paramount. Key Technical Features Corrosion-Resistant Construction All product contact surfaces made from high-grade stainless steel and other non-metallic materials Comprehensive sealing and protective coatings prevent chemical attack and wear Resistant to a broad range of acids, bases, solvents, and other aggressive substances **Oil-Free Lubrication System** Eliminates risk of lubricant contamination in sensitive chemical processes Maintenance-free design with no internal oil or grease requirements Supports use in direct product contact applications Optimized Aerodynamic Flow Path Computational fluid dynamics (CFD) analysis used to refine inlet/outlet flow Maximizes vacuum efficiency and capacity while minimizing pressure losses Reduces energy consumption and noise levels for safe, comfortable operation Advanced Control and Monitoring Intelligent PLC-based control system with touchscreen HMI Real-time performance monitoring and predictive maintenance capabilities Remote access and cloud-based analytics ensure optimal operation Key Advantages Exceptional corrosion and chemical resistance for harsh industrial environments Oil-free design eliminates risk of process contamination Energy-efficient operation and low noise levels for workplace safety Comprehensive control and monitoring features enable intelligent optimization

Scope of application

It is suitable for sewage treatment industry, petrochemical industry, food and drug industry, textile industry, metallurgy industry, cement and construction materials industry, printing and dyeing industry and other industries.

Market Distribution

We have 42 offices throughout the country, in addition to Taiwan Province, 33 provinces in the country's ad-ministrative regions have a sound sales and service network. We can provide you with pre-sale, in-sale and after-sales service in a timely and convenient manner, understand your needs, and constantly improve the service and quality system while meeting the customized needs of customers.

High Performance Aerodynamic Design Methodology for Wide Service Conditions

By studying the influence of impeller and volute flow on efficiency and working stability, the R&D team proposed a flow control method and a pneumatic optimization design method to improve the performance of the main engine, which greatly improved the efficiency of the main engine.

Manufacturing & Equipment Base

has built laboratories, R& D buildings, processing workshops, etc., with internationally advanced and China leading high-precision processing equipment.

>>SSR-V 真空性能表

>> TYPE SSR-V VACUUM PER=OR!	MANCE TABLE			
0.75kW 1.1kW 1.5kW	2.2kW 3kW	4kW	5.5kW	7.5kW 11kW
15kW 18.5kW 22kW	30kW 37kW	45kW	55kW	75kW 90kW

		真空度	-100n	nmHa .	-150m	mH ₂ :	-200m	mHa	-250m	nmHg	-300n	nmHa
型式	口径	VARUUM	-1360)mmAq	-2040r	mmAq	-2720	mmAq	-3400	mmAq	-4080	mmAq
Туре	Bore	- 敬遠 rpm	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La
		1100	1.12	0.36	1.03	0.55	0.94	0.74	0.86	0.93		
		1230	1.29	0.47	1.20	0.67	1.10	0.88	1.02	1.08		
	吸入口径	1350	1,45	0.58	1.36	0.80	1.26	1.02	1.16	1.24		
	5K-40A	1470	1.62	8.74	1.64	0.96	1.45	1.18	1.35	1.40	1.25	1.62
SSR-	吐出口径	1560	1.76	0.86	1.69	1.09	_ 1.60	1.31	1.80	11.84	1.37	1.76
50V		1660	1.88	0.93	1.81	1.17	1.71	1.41	1.101	11,986	1.48	1.9
	1.0MPa-50A	1750	1.99	0.99	1.92	1.27	1.82	1.50	11.7711	11.795	1.58	2.0
		1850	2.12	1.13	2.05	1.39	1.95	1.65	1.3%	11.99h	1.71	2.17
		1960	22.271	1.28	27,220	1.55	22140	14.89/1	11999	22.038	1.90	2.34
		2120	2.46	1.56	2.38	1.84	2.27	2.21	2.15	2.40	2.02	2.6
		1100	1.57	0.75	1.43	0.98	1.30	1.21	11/198	11:465		
		1240	1.83	0.84	1.69	1.09	1.54	1.35	11:400	11,681		
		1360	2.08	0.95	1.93	1.24	1.78	1.52	11684	11.881		
	吸入口径	1460	2.27	1.05	2.13	1.35	1.99	1.65	1.84	1.96	1.70	2.2
	5K-50A	1550	2.47	1.13	2.32	1.45	2.17	1.77	2.03	2.09	1.88	2.41
SSR-	叱出口径	1670	2.70	1.24	2.56	1.58	2.42	1.93	2.27	2.28	2.13	2.6
65V	1.0MPa-65A	1770	2.90	1.32	2.76	1.69	2.62	2.06	2.49	2.43	2.35	2.7
		1860	3.08	1.44	2.94	1.82	2.80	2.20	2.65	2:59	2.5t	2.9
		1960	3.33	1.60	3.18	2.00	3.03	2.41	2.89	2.81	2.74	3.2
_		2150	3.57	1.84	3.43	2.28,	3.30	2.72	3.16	3.16	3.02	3.60
		1130	2.29	1.01	2.79	1.46	2.65	1.90	2.50	2.35		
		1240	2.92	1,17	3.15	1.66	3.00	2.14	2.85	2.63	2.69	3.1
	吸入口径	1300	38.469	1.30	3.35	1.80	3.20	2.30	3.05	2.80	2.89	3.3
		1370	3.78	1364	3.59	1.96	3.44	2.49	3.29	3:01	3.13	35
SSR-	5K-65A	1470	4498	1980	3.89	2.16	3.74	2.73	3.59	3.30	3.43	3.8
001/	吐出口径	1570	44385	1882	4.21	2.40	4.07	2.99	3.92	3.57	3.77	6.7
80V	1.0MPa-80A	1660	44/84	22001	4.51	9 A7	4.37	3.2%	4.22	3.85	4.08	4.4
		1750	4.95	2.23	4.81	2.85	4.6.7	3.48	4.53	4.11	4.38	4.7.
1		1840	5.23	2.42	5.10	3.09	4.95	3.75	4.B1	4.42	4.85	5.0
_		1930	5.53	2.64	5.40	3.33	5.26	4.02	5.11	4.72	4.95	5,4
		1070	4.35	1.56	4.06	2.24	3.83	2.92	3.57	3.60		_
- 1		1160	4.83	1.80	4.56	2.53	429	3.27	4.03	6.04	3.78	47.
	吸入口径	1240	5.27	1.97	4.99	2.74	4.72	3.52	4.48	4.29	4.20	5.0
	5K-80A	1320	5.80	2.09	5.54	2.94	5.27	3.79	5.04	4.64	4.78	54
SSR-	「吐出日兌	1480	6.51	2.27	6.28	3.19	6.05	4.16	5.82	5.05	5000	5699
100V	1.0MPa-100A	1580	6.99	2:45	6.77	3.43	6.55	55.24	6.33	55444	6.10	64
		1700	7.57	2.66	77:37	38792	7.16	4.79	6.95	55/86	6.73	16.9
		1790	8.00	2.87	77681	38:95	7.60	5/B7	77398	6.19	7.15	7.2
		1890	8.47	3.03	86/29	44201	8.09	5.39	75.6B	56556	7.66	7.7

>>SSR-V 真空性能表

>> TYPE SSR-V VACUUM PERFORMANCE TABLE

		-47. 1						-				_
704 D	- 17	真空度 Vacuum	-100r	nmHg	-150n		-200r		-250n	nmHg	-300n	
型式	口径	pressure	-1360	mmAq	-2040	immAq	-2720	ImmAq	-3400	mmAq	-4080	mmAq
Туре	Bore	转速 rpm	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La
		980	6.24	2.27	5.97	3.17	5.70	4.07	5.42	4.97	5.14	5.86
		1050	6.75	2.60	6.48	3.53	6.21	4.47	5.94	5.41	5.66	6.35
	吸入口径	1200	7.77	3.26	7.51	4.31	7.25	5.37	6.98	6.42	6.69	7.47
	5K-100A	1310	8.57	3.71	8.36	4.87	8.13	6.02	7.88	7.18	7.61	8.33
SSR-		1410	9.27	4.05	9.05	5.29	8.82	6.53	8.57	7.77	8.30	9.00
125V	吐出口径 1.0MPa-125A	1470	9.70	4.37	9.48	5.66	9.25	6.95	9.02	8.23	8.78	9.21
1201	1.0MPa-125A	1550	10.30	4.62	10.10	5.98	9.82	7.34	9.58	8.70	9.33	10.1
		1650	11.00	5.18	10.70	6.64	10.50	9.11	10.30	9.58	10.10	11.1
		1770	11.80	5.70	11.50	7.23	11.30	8.75	11.10	10.30	10.90	11.8
		1880	12.50	6.25	12.30	7.86	12.00	9.46	11.80	11.10	11.60	12.7
		810	12.60	3.51	12.20	4.83	11.80	6.72	11.40	8.61	11.00	10.5
		870	13.80	4.12	13.30	6.00	12.80	7.80	12.30	9.77	11.80	11.7
		990	15.60	4.46	15.20	6.58	14.70	8.70	14.30	10.80	13.80	12.8
	吸入口径	1120	17.70	6.61	17.30	8.94	16.80	11.30	16.30	13.60	15.80	15.5
	5K-125A	1200	19.10	7.57	18.70	9.93	18.20	12.30		14.70		
SSR-	吐出口径	1270	20.30	8.40	19.90	10.80	19.50	13.20	19.10		18.70	18.0
150V	1.0MPa-150A	1410	22.50	10.50	22.10	13.20	21.70	15.90	21.30	18.60	20.80	21.3
		1540	24.60	12.50	24.20	15.40	23.70	18.30	23.20	21.20	22.70	24.0
		1670	26.50	14.30	26.00	17.40	25.50	20.50	25.00	23.50	24.50	26.6
		1780	27.80		27.30	19.20	26.80	22.50	26.30	25.80	25.70	29.1
		970	21.19	8.09	20.43	11.19	19.57			15.85	18.01	18.1
		1110	24.84	10.07	23.90	13.81	23.10	16.65	22.55	19.14	21.51	21.7
	吸入口径	1180	26.63	11.46	25.75	14.56	24.86	17.75	24.28	20.53	23.42	23.4
SSR-	5K-150A	1240	28.18	11.96	27.24	15.70	26.55	19.01	25.88	21.74	24.96	25.1
175V	吐出口径	1400	32.18	14.20	31.32	18.48	30.57	22.64	29.95	25.53	29.08	29.2
11.54	1.0MPa-200A	1520	35.15	16.11	34.25	20.99	33.65	24.85	32.91	28.58	32.03	32.3
		1620	37.48	18.02	36.62	23.57	35.79	27.67	35.13	31.53	34.23	35.8
		1730	40.00	20.22	39.12	26.00	38.32	30.85	37.66	35.35	36.67	39.6
		810		10.38		14.89	29.01	18.96	28.16	23.20	27.08	27.4
		900	34.92		33.98		33.17	22.01	32.28	26.82	31.16	31.4
	吸入口径	980	38.39	14.40	37.24	19.66	36.85	24.80	35.97	30.06	34.78	35,1
SSR-	5K-200A	1070	42.37	16.59	41.02	21.61	40.97	27.72	40.09	33.57	38.86	39.3
	吐出口径	1150	45.90	18.61	45.25	24.06	44.65	30.15	43.72	36.35	42.50	42.7
200V	1.0MPa-200A	1230	49.01	20.58	48.38	26.74	47.79	33.47	47.02	40.25	45.87	46.8
	1.0/mr d=2.00M	1310	52.06	23.03	51.51	29.61	50.95	36.65	50.33	43.84	49.24	50.5
		1390	55.69	25.15	55.19	32.33	54.59	39.86	53.61	47.40	52.84	55.0
		1480	58.65	27.52	58.17	34.85	57.64	43.13	57.30	51.20	56.46	59.

	75kW	1.1KW		1.5kW	2	2×W (_] 3kV	v E	4kW		5.5kW		7.5kW	11	1kW
1	5kW	18.5kW		Z2KW	3	OKW E	374	w	45kW		(J5KW	-	75kW [9)kW/
	Os	各 真空!!	更下的因	第(mi)mi	in)						La 死礼	Rist, Jucky	V)		
	03	Vacuum	n Volum	e at each	Dischar	rge press	sure(mi/r	nin) -			Re	quired ele	ectric pov	wer(kW)	
		真空度	-100n	nmHis	-150n	nmHg	-200m	mHg	-250m	mHa	-300n	nmHa	-330m	mHa	真空
型式	日径	Vacuum- pressure	-1360	pAmm	-2040	pAmm	-2720	mmAq	-3400	pAmm	-4080	mmAq	-4488	pAmm	Vacu press
Туре	Bore	特法	Qs	La	Qs	La	Qs	La	Qs	La	Ch.	ła	Qs	La	· 約 m
		1100	1.12	0.36	1.03	0.55	0.94	0.74	0.98	0.93					110
		1230	1.29	0.47	1.20	0.67	1.10	0.88	1.02	1.08	La sub La				123
	吸入口径	1350	1.45	0.58	1,36	0.80	1.26	1.02	1.16	1.24	4.04			1.74	135
SSR-	5K-40A	1470	1.52	0.74	1.54	0.96	1.45	1.18	1.35	1.40	1.25	1.62	1.21	1.75	147
	動作目径	1660	1.88	0.93	1.81	1.17	1.71	1.41	1.50	1.66	1.31	1.90	1.42	2.04	156
50VH	1.0MPa-50A	1750	1.99	0.99	1.92	1.27	1.82	1.50	1.71	1.76	1.58	2.02	1.52	2.17	175
		1850	2.12	1.13	2.05	1.39	1.95	1.65	1.84	1.91	1.71	2.17	1.64	2.32	185
		1660	227	1.28	2.20	1.55	2.10	1.81	1.99	2.08	1.90	2.34	1.85	2.50	196
		2120	全緒	1.56	2.38	1.84	2.27	2.21	2.15	2,40	2.02	2.67	1.95	2.83	212
		2900	287	1.78	2.59	2.10	2.48	2.50	2,37	2.70	2.27	3.05	2.23	3.21	230
		1100	1.83	0.75	1.43	0.98	1.30	1.21	1.15	1.45	-				110
	锡入口径	1360	2.08	0.95	1.09	1.09	1.04	1.52	1.64	1.61			-		124
	56-50A	1460	227	1.05	2.13	1.35	1.99	1.65	1.84	1.96	1.70	2.26	1 61	2.44	146
SSR-	- 秋出口径	1550	2.47	1.13	2.32	1.45	2.17	1.77	2.03	2.09	1.88	2.41	1.80	2.60	155
65VH	1.0MPa-65A	1670	2.70	1 24	2.56	1.58	2.42	1.93	2,27	2.28	2.13	2.62	2.05	2.83	167
		1770	2.90	1.32	2.76	1.69	2.62	2.06	2,49	2.43	2.35	2.79	2.27	3 03	177
		1860	3.08	1.44	2.94	1.82	2.80	2.20	2.65	2.59	2.51	2.98	2.44	3 20	109
		1960	3.33	1.60	3.18	2.00	3.03	2.41	2.69	2.61	2.74	3.23	2.72	3.47	196
		2150	3.80	2.10	3.43	2.28	3.30	2.72	3.16	3.16	3.02	3.60	2.92	3.88	215
		1130	2.92	1.01	2.79	1.46	2 65	1 90	2.50	2.35	0.10	3,03	3.00	4.61	113
		1240	3.29	1.17	3.15	1.66	3.00	2.14	2,85	2.63	2.69	3.11	2.62	3.40	124
		1300	3.49	1.30	3.35	1.60	3.20	2.30	3.05	2.80	2.89	3.30	2.82	3.60	130
		1370	3.73	1.44	3.59	1.96	3.44	2.49	3.29	3.01	3.13	3.53	3.05	3.84	137
	吸入时德	1470	4.03	1.60	3.89	2.16	3.74	2.73	3.59	3.30	3.43	3.86	3.35	4.20	147
SSR-	5K-85A	1970	4.35	1.82	4.21	2.40	4.07	2.99	3.92	3.57	3.77	4.16	3.66	4.51	157
80VH	毗肋孫	1660	4.64	2.01	4.51	2.62	4.37	3.24	4.22	3.85	4.66	8.45	3.96	A.82	100
	1.0MPa-80A	1759	4.95	2.23	4.81	2.65	4.67	3.48	4.53	4.41	4.36	4.73	4.27	5.10	175
		1840	5.53	2.64	5.40	3.33	6.26	4.06	6,11	4.42	4.00	9.09	4.50	9.48	194
		2100	6.09	2.68	5.06	3.65	6.82	4.42	5.65	5.19	5.49	5.96	5.41	9.62	210
		2300	6.75	3.27	6,62	4,12	6.48	4.96	6.31	5.80	6.15	0.65	6.07	7.14	230
-		1070	4.35	1.56	4.08	2.24	3.80	2.92	3.57	3.60					107
		1160	A.83	1.80	4.56	2.53	4.29	3.27	4.03	4.04	3.78	4.72	3.03	5.15	116
		1240	5.27	1.97	4.99	2.74	4.72	3.52	4.48	4.29	1.29	5.07	4.07	5.52	124
	吸入目径	1320	5.80	2.09	5.54	2.64	5.27	3.79	5.04	4.64	4.74	5.48	4.56	6.60	132
SSR-	5K-80A	1480	5.51 6.99	2.27	6.28	3.19	6.05	A 14	5.62	5.05	<u>5.60</u> 6.10	5.97	5.47	6.51	148
100VH	电阳谷	1580	9.37	2.66	9.37	3.43	7.16	4.44	6.33	5.86	6.73	6.40	5.96	7.56	158
1	1.0MPa-100A		8.00	2.66	7.81	3.55	7.60	5.97	0.99 7.38	9.89	7.15	9.92	1.01	7.98	170
		1890	8.47	3.03	8.29	421	8.09	5.59	7.68	0.50	7.65	7.74	7.53	8.45	189
		2010	9.09	323	6.98	4.48	8.75	5.74	8.57	7.00	8.38	8.28	8.27	9.03	201
		2200	10.07	3.56	9.91	5,00	9.63	6.37	9.33	7.79	8.98	8.13	6.89	9.95	220
		转逐	0.5	1.0	Os.	La	Q\$	La	0s	La	68	La	Q6	6.0	一秒
型式	日径	10000 1212119		immAg	Number of Street, or other	immAq		La ImmAg	-	La		BminAg	and and a second	Le	加速
Type	Bore	Vacuum;	-100		-2045		-200			mmAq nmHs			1.1.0.0		Vacu
100		pressure	- 100h	Initial and	-1568	all to	-2008	a tipic	-2001	1000 PD	-300	mmHic	-330r	nmetic –	press

SSR-VHB型 真空性能表

TYPE SSR-VHB VACUUM PERFORMANCE TABLE 1.1kW 1.5kW 2.2kW 3kW 4kW 7.5kW 11kW 11kW 15kW 18.5kW 22kW 30kW 37kW 45kW 55kW 90kW 90kW 110kW 水芝使 -100mmH₂ -150mmH₂ -200mmH₂ -250mmH₂ -300mmH₂ -300mmH₂ -300mmH₂ -1360mmAq -2040mmAq -2720mmAq -3400mmAq -4080mmAq -4 -330mmHg 真空度 -4488mmAq 型式 日径 pressure press 校進 Qs La Qs La Qs La Qs La Qs La Qs La 转速 Type Bore Qs La
 Hole pm
 Qs
 La
 <t 吸入口径 5K-100A
 1310
 0.37
 4.05
 9.05
 5.29
 8.26
 6.53
 8.77
 7.80
 7.10
 7.01
 8.30
 7.00
 8.30
 7.00
 8.30
 7.00
 8.30
 7.00
 8.30
 9.00
 8.15
 9.73

 1410
 9.27
 4.05
 9.05
 5.29
 8.62
 6.53
 8.77
 7.77
 8.30
 9.00
 8.15
 9.73

 1470
 9.70
 4.37
 9.48
 5.66
 9.25
 6.55
 9.02
 8.23
 8.78
 9.50
 8.50
 10.28

 1550
 10.37
 4.62
 10.10
 5.98
 9.82
 7.34
 9.58
 8.70
 9.33
 10.10
 9.13
 10.92

 1850
 11.00
 5.18
 10.70
 6.64
 10.50
 8.11
 10.30
 9.58
 10.10
 11.10
 6.04
 11.93
SSR-1410 1410 吐出口径 1470 1470 125VHB 1.0MPa-1550 1550 125A 1650
 170
 11.80
 5.70
 11.50
 7.23
 11.30
 8.75
 11.10
 10.30
 10.90
 11.80
 10.38
 12.71

 1860
 12.50
 6.25
 12.30
 7.86
 12.00
 9.46
 11.80
 11.10
 11.80
 12.70
 11.15
 13.66

 2000
 13.37
 6.84
 13.17
 8.55
 12.85
 10.27
 12.51
 11.97
 12.21
 13.69
 12.04
 14.72
1770 1880 2000
 2000
 13.37
 6.84
 13.17
 6.85
 12.68
 10.27
 12.81
 11.37
 12.21
 13.69
 12.04
 14.72

 810
 12.60
 351
 12.20
 4.83
 11.80
 6.72
 11.80
 10.00
 10.50
 10.75
 11.81

 870
 13.80
 4.12
 13.30
 6.00
 12.80
 7.80
 12.30
 9.77
 11.80
 11.70
 11.50
 12.74

 990
 15.60
 4.46
 15.10
 6.58
 14.60
 8.70
 14.20
 10.80
 15.80
 12.90
 13.60
 12.74

 120
 17.70
 6.61
 17.30
 18.80
 13.80
 12.90
 13.60
 14.17

 120
 19.20
 7.57
 18.70
 8.84
 18.20
 13.80
 14.70
 15.80
 15.90
 15.90
 15.90
 15.90
 15.90
 15.90
 13.80
 13.80
 13.80
 13.80
 13.80
 13.80
 13.80
 13.80
 13.80
 13.80
 810 870 990 吸入口径 1120 SSR-5K-125A 1200 1270
 2030
 8.40
 19.80
 10.80
 19.50
 13.20
 11.10
 15.60
 18.70
 18.00
 18.09
 19.42

 22 50
 10.50
 22.10
 13.20
 11.30
 15.90
 18.70
 18.00
 21.00
 21.00
 21.30
 18.60
 20.90
 21.30
 20.00
 21.30
 21.20
 21.20
 21.20
 22.80
 22.80
 22.80
 22.80
 22.80
 22.80
 22.80
 22.80
 22.80
 22.80
 22.80
 22.80
 23.80
 22.80
 23.80
 24.50
 13.01
 22.82
 22.80
 23.80
 24.80
 24.90
 23.81
 21.00
 25.81
 31.07
 23.81
 21.90
 27.81
 28.80
 28.80
 25.80
 28.80
 28.73
 28.80
 28.80
 28.73
 28.80
 28.77
 28.80
 28.77
 28.80
 28.77
 28.80
 28.77
 28.80
 28.77
 28.80
 28.77
 28.80
 28.77
 28.80
 28.77
 28.80
 28.77
 28.80
 28.77 150VHB 叶出口径 1410 1410 1.0MPa-1540 1540 150A 1670 1670 1780 1780 1900 1900 810 810 900 900 吸入口径 080 980 5K-200A 1070 1070 SSR-吐出口径 1150 1150 200VHB 1.0MPa-1230 1230 200A 1310 1310 1390 1390 1480 58.17 34.85 57.64 43.13 57.05 51.20 1480
 Bits
 27.02
 55.7
 27.7
 34.85
 57.64
 43.13
 57.05
 51.20
 56.49
 59.16

 55.7
 20.7
 52.24
 27.1
 51.20
 56.49
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 54.91
 56.91
 56.91
 56.91
 56.91
 56.91
 56.91
 56.91
 56.91
 56.91
 56.91
 57.92
 56.91
 56.91
 56.91
 57.91
 56.91
 57.91
 56.91
 57.91
 56.91
 56.91
 57.91
 56.91
 57.91
 56.91
 57.91
 56.91
 71.60
 71.48
 57.31
 57.91
 57.91</td 900 980 980 SSR-1070 1070 250A
 66.10
 67.65
 65.90
 74.84

 71.60
 73.48
 71.10
 81.07
250VHB 1160 1160 1240 1240 1350 1350

SSR-T型 性能表 TYPE SSR-T PERFORMANCE TABLE

0.1500			tsiw Siw			1.160		-	4.0	w			Qs: La:	地(c) 所否)	(1)(1)	(10)	Veiluit	ha(2004)	H)	
							4	1		HL Disc	harge	E. Pres	ssure	加	Majlier	(fn				
# 六		彩道	0.	10	0.	15	0.	20	0.	25	0.1	30	0.3	35	0.1	10	0.4	15	0	50
Туре	Bore	rpm	9.8	kPa	14.	7kPa	19.6	kPa	24.5	5kPa	29.4	ikPa	34.3	skPa	39.	2kPa	44.	1kPa	49.0)kPa
			Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La
		1750	160	0.20	150	0.22	140	0.24	130	0.26	120	0.28	110	0.30	100	0.32				
SSR -20T	*/,B	2000	200	0.23	190	0.25	180	0.27	170	0.29	160	0.31	150	0.33	140	0.35	130	0.37		
55K-201	(20A)	2250	240	0.26	230	0.29	220	0.31	210	0.33	200	0.35	190	0.38	180	0.40	170	0.43	160	0.46
		2500	270	0.29	260	0.32	250	0.34	240	0.37	230	0.39	220	0.42	210	0.44	200	0.47	190	0.50
		1750	210	0.23	195	0.25	180	0.27	265	0.30	150	0.32	135	0.35						
	18	2000	270	0.26	255	0.29	240	0.31	225	0.34	210	0.37	195	0.40	180	0.43	160	0.46		-
SSR -25T	(25A)	2250	310	0.30	295	0.33	280	0.35	265	0.39	250	0.42	235	0.46	220	0.49	200	0.53		
		2500	360	0.33	345	0.36	330	0.39	315	0.43	300	0.46	285	0.50	270	0.54	250	0.58	230	0.6
		1750	360	0.27	340	0.31	320	0.34	300	0.38	280	0.42	260	0.45	240	0.50				
	17,B	2000	440	0.31	420	0.35	400	0.39	380	0.44	360	0.48	340	0.53	320	0.57				
SSR -32T	(32A)	2250	520	0.35	500	0.40	480	0.44	460	0.49	440	0.54	420	0.59	400	0.64	370	0.70		
		2500	600	0.39	580	0.44	560	0.49	540	0.55	520	0.60	500	0.65	480	0.71	450	0.78	420	0.8
										-			(2)6 (L3)	State Million House	ion-ph 动力(k uired e	W) lectric		ne(m ³ /n (kW)	nin)	
							,	t		Dis	charge	Pre	ssure	7	(kgt/a	m*)				
银 武 Type	山 德 Bore	線 進 rpm	-	10 kPa	-	.15 7kPa		20 kPa	-	25 5kPa	0.	30 tkPa	0.3	35 Ikića	0.	40 25/85a	0.	45 1kPa	-	50 3kPa
	1.11		Qs	La	Qs	La	Os	La	Qs.	La	Qs	La	Qs	Lia	08	La	Qs.	La	Qs	La
	-	1000	0.45	0.32	0.42	0.36	0.39	0.40	0.36	0.46	0.33	0.52	-	-08		68	-		0.0	-
	17,8	1250	0.65	0.40	0.62	0.45	0.59	0.50	0.56	0.58	0.53	0.65	00351	00753	0.48	0.80	0.45	0.90	0.43	0.9
SSR -40T	(40A)	1500	0.84	0.48	0.81	0.54	0.78	0.60	0.75	0.69	0.70	0.70	007700	00.897	Tanta	07956	Onderfor	1.07	0.62	1)6
	(404)	1000				0.04			0.75	0.09	0.72	0.78	(JUNAU)	100001	10087	V1250	10.85	1.104	1004	1.10.14

R -40T	17,8	1200	0.00	0.40	0.02	0.45	0.59	0.50	0.50	0.50	0.53	0.05	0.01	GUIND	10.40	10.00	0.40	0.90	0.45	0.99	1
	(40A)	1500	0.84	0.48	0.81	0.54	0.78	0.60	0.75	0.69	0.72	0.78	007700	00897	00687	07998	DES	1.07	0.62	1,168	l
		1750	1.04	0.56	1.01	0.63	0.98	0.70	0.95	0.81	0.92	0.91	006930	110011	0.397	11.111	0.85	1.25	0.82	1.38	l
				10000				-		0.92					100000	10000					l
R -50T	28	1250																			1
	(50A)	1500	1.61	0.96	1.57	1.08	1.52	1.20	1.48	1.38	1.44	1.58	11:40	11/14	1,36	1982	1.32	2.14	128	238	l
		1750	2.01	1.12	1.97	1.26	11:92	11:40	188	1981	1984	182	11,980	2002	年7月88	222	1.72	2.49	1.68	2.76	l
		1000	1.19	0.80	1.07	0.90	201944	11,00	0.85	11.115	0778	1,30	0)17:	11 445	039	1:00					l
R-881	24,8	1250	1.69	1.00	1.57	1.13	11:465	11/25	1(3)(8	11:44	11/2/8	1,63	11/18	11,992	11 1100	200	1.05,	2.23	0.99	2.45	l
1001	(85A)	1(500	2.118	120	208	1.35	11:58	11:50	11:84	11773	11774	1.98	11:56	2118	11.358	2:40	11583	2/88	1.47	2.95	l
				-	Basedon	10000		-			_										4

11/50 2/68 1/40 2/58 1.58 22/83

0.55kW		0 2	75kW	MANC		1.1kW 3.0kW						Qs La	Sucti Fritti	むおい ion-pha 約力(kV uired ele	se Air V)	Volum		0	
		真空度	-50mr	nHg	-75m	nHc	-100mr	mHg -1	25mmH	-150	mmHg	-175	nmHg	-200m	mHg	-225m	mHg	-250r	ттHg
型 式 Type	LI 径 Bore	Pressure	-680m	mAq -	10201	mAq -	1360m	nmAq -1	700mm4	q -204	OmmAq	-2380	pAmm	-27201	pAm	-3060n	pAme	-3400	mmAq
illie	oore	R _{apl}	Qs	La	Qs	_	_	_	2s La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La
		1750	165	0.15	150	0.16	135 (0.18 1	20 0.1	9 105	0.21	90	0.22						
SSR -20VT	¥,B	2000	215	0.17	200	0.18	185 (0.19 1	70 0.2	1 155	0.22	140	0.24	125	0.25				
55R -20V1	(20A)	2250	245	0.19	230	0.21	215 (0.23 2	00 0.2	4 185	0.26	170	0.28	155	0.30	140	0.32		
		2500	285	0.26	270	0.28	255 (0.30 2	40 0.3	2 225	0.34	210	0.36	195	0.38	180	0.40	165	0.42
		1750	255	0.19	235	0.21	215 (0.23 1	95 0.2	5 180	0.27	165	0.29	150	0.31				
SSR -25VT	1B	2000	320	0.22	300	0.25	280 (0.27 2	60 0.3	0 240	0.33	225	0.35	210	0.38	195	0.40		
Sold - 20VI	(25A)	2250	355	0.24	335	0.27	315 (0.30 2	95 0.3	3 280	0.36	260	0.38	145	0.41	230	0.43	215	0.45
		2500	390	0.28	370	0.31	350 (0.34 3	30 0.3	7 315	0.40	300	0.43	285	0.46	270	0.49	255	0.52
		1750	415	0.24	375	0.27	335 (0.30 3	05 0.3	3 275	0.36	250	0.40	230	0.43	210	0.46		
00 220	17,B	2000	530	0.25	490	0.29	450 (0.33 4	10 0.3	6 375	0.40	340	0.44	310	0.47	285	0.51		
SSR -32VT	(32A)	2250	610	0.29	570	0.33	530 (0.37 4	90 0.4	1 450	0.45	415	0.49	385	0.53	360	0.57	330	0.61
		2500	685	0.31	645	0.36	605 (0.41 5	65 0.4	5 525	0.50	485	0.55	445	0.59	420	0.64	395	0.68
		東空変	-50m		-75m		-100mr		25mmH	-	OmmH(; OmmAq		nmHg ImmAg	-200m		-225m			mmH≤
型式		pressure	-6801	nmAq -	10201	mod -	130011	1941						-21201	pAmn	-3060r	nmAq	-3400)mmAq
型 式 Type	Bore	Pressure Fugli	Qs	La	Qs	La	Qs	La (as La	Qs	La	Qs	La	Qs	La	Qs	La	-3400 Q5	
		1000	Qs 0.60	La 0.23	Qs 0.56	La 0.27	Qs 0.52	La (A8 0.3	Qs 5 0.4	La 4 0.40	Qs 0.40	La 0.44	Qs 0.36	La 6.48	Qs 0.32	La 0.52	Qs	La
Туре	Bore 11/,B	1000 1250	Qs 0.60 0.77	La 0.23 0.30	Qs 0.56 0.73	La 0.27 (0.35 (Qs 0.52 0.69	La (0.31 0 0.40 0	A8 0.3	Qs 5 0.4 6 0.6	La 4 0.40 1 0.51	Qs 0.40 0.57	La 0.44 0.57	Qs 0.36 0.53	La 6.48 6.62	Qs 0.32 0.49	La 0.52 0.67	Qs 0.45	La 0.73
Туре	Bore	1000 1250 1500	Qs 0.60 0.77 1.03	La 0.23 0.30 0.34	Qs 0.56 0.73 0.99	La 0.27 (0.35 (0.40 (Qs 0.52 (0.69 (0.94 (La (0.31 (0 0.40 (0 0.47 (0	2s La 48 0.3 65 0.4 90 0.5	Qs 5 0.4 6 0.6 4 0.8	La 4 0.40 1 0.51 6 0.61	Os 0.40 0.57 0.82	La 0.44 0.57 0.67	Qs 0.36 0.53 0.78	La 6.48 6.62 0.74	Qs 0.32 0.49 0.74	La 0.52 0.67 0.81	Qs 0.45 0.69	La 0.73 0.88
	Bore 11/,B	1000 1250 1500 1750	Qs 0.60 0.77 1.03 1.14	La 0.23 0.30 0.34 0.40	Qs 0.56 0.73 0.99 1.11	La 0.27 (0.35 (0.40 (0.47)	Qs 0.52 (0.69 (0.94 (1.06 (La (0.31 0 0.40 0 0.47 0 0.54 1	2s La 48 0.3 65 0.4 90 0.5 04 0.6	Qs 5 0.4 6 0.6 4 0.8 1 1.0	La 4 0.40 1 0.51 6 0.61 1 0.69	Qs 0.40 0.57 0.82 0.98	La 0.44 0.57 0.67 0.76	Qs 0.36 0.53 0.78 0.94	La 6.48 6.62 0.74 0.83	Qs 0.32 0.49 0.74 0.91	La 0.52 0.67 0.81 0.90	Qs 0.45 0.69	La 0.73
Туре	Bore 11/,B (40A)	1000 1250 1500 17750 1000	Qs 0.60 0.77 1.03 1.14 1.18	La 0.23 0.30 0.34 0.40 0.45	Qs 0.56 0.73 0.99 1.11 1.10	La 0.27 (0.35 (0.40 (0.47) 0.54 (Qs 0.52 (0.69 (0.94 (1.08 (1.02 (La (0.31 0 0.40 0 0.47 0 0.54 1 0.63 0	2s La 48 0.3 65 0.4 90 0.5 04 0.6 94 0.7	Qs 5 0.4 6 0.6 4 0.8 1 1.0 1 0.8	La 4 0.40 1 0.51 5 0.61 1 0.69 6 0.80	Os 0.40 0.57 0.82 0.98 0.78	La 0.44 0.57 0.67 0.76 0.89	Qs 0.36 0.53 0.78 0.94 0.70	La 6.48 6.62 0.74 0.83 0.98	Qs 0.32 0.49 0.74 0.91 0.62	La 0.52 0.67 0.81 0.90 1.06	Qs 0.45 0.69 0.88	La 0.73 0.88 0.98
Type SSR -40VT	Bore 11/,B (40A) 2B	1000 1250 1500 1750 1000 1250	Qs 0.60 0.77 1.03 1.14 1.18 1.52	La 0.23 0.30 0.34 0.40 0.45 0.57	Qs 0.56 0.73 0.99 1.11 1.10 1.44	La 0.27 (0.35 (0.40 (0.47) 0.54 (0.68)	Qs 0.52 (0.69 (0.94 (1.08 (1.02 (1.36 (La (0.31 0 0.40 0 0.47 0 0.54 1 0.63 0 0.79 1	2s La 48 0.3 65 0.4 90 0.5 04 0.6 94 0.7 28 0.9	Qs 5 0.4 6 0.6 4 0.8 1 1.0 1 0.8 0 1.2	La 4 0.40 1 0.51 5 0.61 1 0.69 6 0.80 0 1.00	Os 0.40 0.57 0.82 0.98 0.78 1.12	La 0.44 0.57 0.67 0.76 0.89 1.11	O36 0.36 0.53 0.78 0.94 0.70 1.04	La 6.48 6.62 0.74 6.83 6.98 1.22	Qs 0.32 0.49 0.74 0.91 0.62 0.96	La 0.52 0.67 0.81 0.90 1.06 1.32	Qs 0.45 0.69 0.88 0.88	La 0.73 0.88 0.98 1.43
Туре	Bore 11/,B (40A)	1000 1250 1500 1750 1000 1250 1500	Qs 0.60 0.77 1.03 1.14 1.18 1.52 1.88	La 0.23 0.30 0.34 0.40 0.45 0.57 0.68	Qs 0.56 0.73 0.99 1.11 1.10 1.44 1.80	La 0.27 (0.35 (0.40 (0.47) 0.54 (0.58) 0.81 (Qs 0.52 0.69 0.94 1.08 1.02 1.36 1.72	La (0.31 0 0.40 0 0.47 0 0.54 1 0.63 0 0.79 1 0.93 1	2s La 46 0.3 65 0.4 90 0.5 04 0.6 94 0.7 28 0.9 64 1.0	Qs 5 0.4 6 0.6 4 0.8 1 1.0 1 0.8 0 1.2 5 1.5	La 4 0.40 1 0.51 8 0.61 1 0.69 6 0.80 0 1.00 6 1.17	Cs 0.40 0.57 0.82 0.98 0.78 1.12 1.48	La 0.44 0.57 0.67 0.76 0.89 1.11 1.29	Qs 0.36 0.53 0.78 0.94 0.70 1.04 1.40	La 6.48 6.62 0.74 0.83 0.98 1.22 1.42	Qs 0.32 0.49 0.74 0.91 0.62 0.96 1.32	La 0.52 0.67 0.81 0.90 1.06 1.32 1.54	O.45 0.69 0.88 0.88 0.88	La 0.73 0.88 0.98 1.43 1.05
Type SSR -40VT	Bore 11/,B (40A) 2B	1000 1250 1500 1750 1000 1250 1500 1750	Qs 0.60 0.77 1.03 1.14 1.18 1.52 1.88 2.35	La 0.23 0.30 0.34 0.40 0.45 0.57 0.68 0.82	Qs 0.56 0.73 0.99 1.11 1.10 1.44 1.60 2.27	La 0.27 (0.35 (0.40 (0.47) 0.54 (0.54) 0.68 (0.81) 0.97 (Qs 0.52 (0.69 (1.08 (1.02 (1.36 (1.72 (2.19)	La (0.31 0 0.40 0 0.47 0 0.54 1 0.63 0 0.79 1 0.93 1 1.12 2	2s La 48 0.3 65 0.4 90 0.5 04 0.6 94 0.7 28 0.9 64 1.0 11 1.2	Qs 5 0.4 6 0.6 4 0.8 1 1.0 1 0.8 0 1.2 5 1.5 7 2.9	La 4 0.40 1 0.51 5 0.61 1 0.69 6 0.80 0 1.00 5 1.17 3 1.42	Os 0.40 0.57 0.82 0.98 0.78 1.12 1.48 1.95	La 0.44 0.57 0.67 0.76 0.89 1.11 1.29 1.57	Qs 0.36 0.53 0.78 0.94 0.70 1.04 1.40 1.87	La 6.48 6.62 0.74 0.83 0.98 1.22 1.42 1.72	Qs 0.32 0.49 0.74 0.91 0.62 0.96 1.32	La 0.52 0.67 0.81 0.90 1.06 1.32	Qs 0.45 0.69 0.88 0.88	La 0.73 0.88 0.98 1.43 1.08
Type SSR -40VT	Bore 11/,B (40A) 2B (50A)	1000 1250 1500 1750 1000 1250 1500 1750 1000	Qs 0.60 0.77 1.03 1.14 1.18 1.52 1.88 2.35 1.30	La 0.23 0.30 0.34 0.40 0.45 0.57 0.68 0.82 0.64	Qs 0.56 0.73 0.99 1.11 1.10 1.44 1.80 2.27 1.20	La 0.27 (0.35 (0.40 (0.47) 0.54 (0.54) 0.54 (0.68) 0.81 (0.97 (0.74)	Qs 0.52 (0.69 (0.94 (1.08 (1.02 (1.36 (1.72 (2.19 (1.10 (La (0.31 0 0.40 0 0.47 0 0.54 1 0.63 0 0.79 1 0.93 1 1.12 2 0.84 1	2s La 48 0.3 65 0.4 90 0.5 04 0.6 94 0.7 28 0.9 64 1.0 11 1.2 00 0.5	Qs 5 0.4 6 0.6 4 0.8 1 1.0 1 0.8 0 1.2 5 1.5 7 2.9 4 0.9	La 4 0.40 1 0.51 5 0.61 1 0.69 6 0.80 0 1.00 5 1.17 3 1.42 0 1.04	Os 0.40 0.57 0.82 0.98 0.78 1.12 1.48 1.95 0.80	La 0.44 0.57 0.67 0.76 0.89 1.11 1.29 1.57 1.14	Qs 0.36 0.53 0.78 0.94 0.70 1.04 1.40 1.87 0.70	La 6.48 6.62 0.74 0.83 0.98 1.22 1.42 1.72 1.24	Qs 0.32 0.49 0.74 0.91 0.62 0.96 1.32 1.79	La 0.52 0.67 0.81 0.90 1.06 1.32 1.54 1.87	Qs 0.45 0.69 0.88 0.88 1.24 1.71	La 0.73 0.88 0.98 1.43 1.58 2.92
Type SSR -40VT	Bore 11/,B (40A) 2B (50A) 21/,B	1000 1250 1500 1750 1000 1250 1750 1000 1250	Qs 0.60 0.77 1.03 1.14 1.18 1.52 1.88 2.35 1.30 1.83	La 0.23 0.30 0.34 0.40 0.45 0.45 0.57 0.66 0.82 0.64 0.70	Qs 0.56 0.73 0.99 1.11 1.10 1.44 1.80 2.27 1.20 1.73	La 0.27 (0.35 (0.40 (0.47) 0.54 (0.68) 0.68 (0.68) 0.61 (0.97 (0.74) 0.83 (Qs 0.52 (0.69 (0.94 (1.08 (1.02 (1.36 (1.72 (2.19 (1.10 (1.63 (La (0.31 0 0.40 0 0.47 0 0.54 1 0.63 0 0.79 1 0.93 1 1.12 2 0.84 1 0.96 1	DS La 48 0.3 65 0.4 90 0.5 04 0.6 94 0.7 28 0.9 64 1.0 11 1.2 00 0.5 53 1.0	Qs 5 0.4 6 0.6 4 0.8 1 1.0 1 0.8 0 1.2 5 1.5 7 2.9 4 0.9 9 1.4	La 4 0.40 1 0.51 5 0.61 1 0.69 5 0.80 0 1.00 5 1.17 3 1.42 0 1.04 3 1.22	Os 0.40 0.57 0.82 0.98 0.78 1.12 1.48 1.95 0.80 1.33	La 0.44 0.57 0.67 0.76 0.89 1.11 1.29 1.57 1.14 1.35	Os 0.36 0.53 0.78 0.94 0.70 1.04 1.40 1.87 0.70 1.23	La 6.48 6.62 0.74 0.83 0.98 1.22 1.42 1.72 1.24 1.48	Qs 0.32 0.49 0.74 0.91 0.62 0.96 1.32 1.79 1.79	La 0.52 0.67 0.81 0.90 1.06 1.32 1.54 1.87	Qs 0.45 0.69 0.88 1.24 1.71	La 0.73 0.88 0.98 1.43 1.58 2.92 1.74
Type SSR -40VT SSR -50VT	Bore 11/,B (40A) 2B (50A)	1000 1250 1500 1750 1000 1250 1500 1750 1000	Qs 0.60 0.77 1.03 1.14 1.18 1.52 1.88 2.35 1.30 1.83 2.19	La 0.23 0.30 0.34 0.40 0.45 0.57 0.68 0.82 0.64	Qs 0.56 0.73 0.99 1.11 1.44 1.80 2.27 1.20 1.73 2.09	La 0.27 (0.35 (0.40 (0.47) 0.54 (0.68) 0.68 (0.97) 0.97 (0.83) 0.97 (0.83)	Cs 0.52 (0.69 (0.94 (1.02 (1.36 (1.72 (1.10 (1.63 (1.99)	La (0.31 0 0.40 0 0.47 0 0.54 1 0.63 0 0.79 1 0.93 1 1.12 2 0.84 1 0.96 1	Image: block with the second	OS 5 0.4 6 0.6 4 0.8 1 1.0 1 0.8 0 1.2 5 1.5 7 2.9 4 0.9 9 1.4 5 1.7	La 4 0.40 1 0.51 5 0.61 1 0.69 6 0.80 0 1.00 5 1.17 3 1.42 0 1.04	OS 0.40 0.57 0.82 0.98 0.78 1.12 1.48 1.95 0.80 1.33 7.69	La 0.44 0.57 0.67 0.76 0.89 1.11 1.29 1.57 1.57 1.55	Qs 0.36 0.53 0.78 0.94 0.70 1.04 1.40 1.87 0.70	La 6.48 6.62 0.74 0.83 0.96 1.22 1.42 1.42 1.24 1.24 1.70	Qs 0.32 0.49 0.74 0.91 0.62 0.96 1.32 1.79 1.79 1.4%	La 0.52 0.67 0.81 0.90 1.06 1.32 1.54 1.87 1.61 1.25	Qs 0.45 0.69 0.88 1.24 1.71 1.99 0.38	La 0.73 0.88 0.98 1.43 1.58 2.92 1.74