

Compact And Low Noise Operation SSR Roots Vacuum Pump For Industrial Applications

Basic Information

Place of Origin: China
Brand Name: Aipu
Model Number: SSR
Minimum Order Quantity: 1

• Price: Negotiable

Packaging Details: Export Standard Packaging

• Payment Terms: T/T, L/C

Product Specification

• Flow Range: 0.45-452.4m³/min

Models: SSRCalibre: 50-200mmVacuum Degree: -9.8kPa~-44kPa

Highlight: compact roots type pump,
 compact roots vacuum pump,
 industrial roots type pump,

industrial roots type pump

Compact and Low Noise Operation SSR Roots Vacuum Pump for Industrial Applications

Product Features

The main product features of SSR Roots vacuum pumps include high pumping speed, wide pressure range, low noise, oil-free operation, compact structure, and energy efficiency.

The specific characteristics of SSR Roots vacuum pump are as follows:

High pumping speed and wide pressure range: SSR Roots vacuum pump has a large pumping speed in a wide pressure range, which can quickly discharge suddenly released gas, making up for the shortcomings of oil sealed mechanical pumps and diffusion pumps, and is suitable for use as a mechanical booster pump.

Low noise: The SSR Roots vacuum pump does not require an intake and exhaust valve, has a simple structure, and operates with low noise.

Oil free operation: The moving parts inside the pump chamber do not require oil lubrication, avoiding contamination of the vacuum system by oil vapor and suitable for applications that require high gas purity.

Compact structure: The SSR Roots vacuum pump has advanced design, reasonable structure, gaps between rotors and between rotors and pump body, no need for lubrication, low friction loss, and can achieve high pumping speed with low power. Energy saving and efficient: The rotor has good geometric symmetry, runs smoothly, and can achieve high pumping speed by increasing the speed, while maintaining a compact structure, small size, and light weight, with significant energy-saving effects.

Fast start-up: The SSR Roots vacuum pump can reach maximum vacuum in a short period of time, significantly improving work efficiency.

In summary, SSR Roots vacuum pumps are widely used in many industries due to their high pumping speed, wide pressure range, low noise, oil-free operation, compact structure, and energy-saving and high-efficiency characteristics.

Scope of application

It is suitable for sewage treatment industry, petrochemical industry, food and drug industry, textile industry, metallurgy industry, cement and construction materials industry, printing and dyeing industry and other industries.

Market Distribution

We have 42 offices throughout the country, in addition to Taiwan Province, 33 provinces in the country's ad-ministrative regions have a sound sales and service network. We can provide you with pre-sale, in-sale and after-sales service in a timely and convenient manner, understand your needs, and constantly improve the service and quality system while meeting the customized needs of customers.

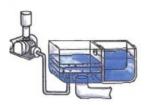
High Performance Aerodynamic Design Methodology for Wide Service Conditions

By studying the influence of impeller and volute flow on efficiency and working stability, the R&D team proposed a flow control method and a pneumatic optimization design method to improve the performance of the main engine, which greatly improved the efficiency of the main engine.

Manufacturing & Equipment Base

has built laboratories, R& D buildings, processing workshops, etc., with internationally advanced and China leading high-precision processing equipment.

Examples of uses


■公寓大楼的污水处理(曝气) Waste water Aeration in Condominiums

■工厂废水和畜产废水处理(曝气) Waste Water Aeration for Shop and Livestock Industries

■养鱼用 Fish Care

■粉体输送(水泥、饲料、小片状物) Transport of Particles

■食品真空包装 Vacuum Pack for Foods

>>SSR-V 真空性能表

>> TYPE SSR-V VACUUM PERFORMANCE TABLE

0.75kW	1.1kW	1.5kW	2.2kW	3kW	4kW	5.5kW	7.5kW	11kW
15kW	18.5kW	22kW	30kW	37kW	45kW	55kW	75kW	90kW

Os. 各真主境下的风景 (m'/min)

La: 所能為 JI(KW)

		真空度	-100n	nmH-	-150m	mH:	-200m	mHe	-250m	nmH _r	-300r	nmHe
型式	日径	Válktúulin Rófelésülne		mmAg	-2040r		-2720			mmAq		mmAq
Туре	Bore	专連 rpm	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La
		1100	1.12	0.36	1.03	0.55	0.94	0.74	0.86	0.93		
		1230	1.29	0.47	1.20	0.67	1.10	0.88	1.02	1.08		
	W > 1 154	1350	1.45	0.58	1.36	0.80	1.26	1.02	1.16	1.24		
	吸入口径	1470	1.62	0.74	1.64	0.96	1.45	1.18	1.35	1.40	1.25	1.62
SSR-	5K-40A	1560	1.76	0.86	1.69	1.09	1.60	1.31	1.80	11:84	1.37	1.76
50V	吐出口径	1860	1.88	0.93	1.81	1.17	1.71	1.41	1.81	11986	1.48	1.90
504	1.0MPa-50A	1750	1.99	0.99	1.92	1.27	1.82	1.50	11.7711	11765	1.58	2.02
		1850	2.12	1.13	2.05	1.39	1.95	1.65	1.364	11391	1.71	2.17
		1960	2271	1.28	2/20	1.55	22190	11,8811	1,99	22,008	1.90	2.34
		2120	2.46	1.56	2.38	1.84	2.27	2.21	2.15	2.40	2.02	2.67
		1100	1.57	0.75	1.43	0.98	1.30	1.21	11/16	11:465		
		1240	1.83	0.84	1.69	1.09	1.54	1.35	11/40	11661		
		1360	2.08	0.95	1.93	1.24	1.78	1.52	11684	11881		
	吸入口径	1460	2.27	1.05	2.13	1.35	1.99	1.65	1.84	1.96	1.70	2.26
	5K-50A	1550	2.47	1.13	2.32	1.45	2.17	1.77	2.03	2.09	1.88	2.41
SSR-	吐出口径	1670	2.70	1.24	2.56	1.58	2.42	1.93	2.27	2.28	2.13	2.62
65V	1.0MPa-65A	1770	2.90	1,32	2.76	1.69	2.62	2.06	2.49	2.43	2.35	2.79
		1860	3.08	1.44	2.94	1.82	2.80	2.20	2.65	2:59	2.5f	2.98
		1960	3.33	1.60	3.18	2.00	3:03	2.41	2.89	2.81	2.74	3.23
		2150	3.57	1.84	3.43	2.28,	3.30	2.72	3.16	3.16	3.02	3.60
		1130	2 29	1.01	2.79	1.46	2.65	1.90	2.50	2.35		
		1240	2.92	1.17	3.15	1.66	3.00	2.14	2.85	2.63	2.69	3.11
	吸入口径	1300	39669	1.30	3.35	1.80	3.20	2.30	3.05	2.80	2.89	3.30
		1370	376	1364	3.59	1.96	3.44	2.49.	3.29	3:01.	3.13	3.53
SSR-	5K-65A	1470	4468	1980	3.89	2.16	3.74	2.73	3.59	3:30	3.43	3.86
80V	마出니죠	1570	44386	1882	4.21	2.40	4.07	2.99	3.92	3.57	3.77	4.16
00 V	1.0MPa-80A	1660	4/84	22001	4.51	9 87	4.37	3.24	4.22	3.85	4 DE	4.46
1		1750	4.95	2.23	4.81	2.85	4.6.7	3.48	4.53	6.11	4.38	4.73
- 1		1840	5.23.	2.42	5,10	3.09	4.95	3.75	4.B11	4.42	4.85	5.09
-		1930	5.53	2.64	5.40	3.33	5.28	4.02	5.11	6.72	4.95	5,411
- 1		1070	4.35	1.56	4.06	2.24	3.80	2.92	3.57	3.60		. 75
		1160	4.83	1.80	4.56	2.53	429	327	4.03	4.04	3.78	4.72
	吸入口径	1240	5.27	1.97	4.99	2.74	4.72	3.52	4.48	4.29	4.20	5.07
SSR-	5K-80A	1320	6.51	2.09	5.54	2.94	527	3.79	5.04	4.64	4.74 5000	5.49
	世出日径	1480	6.00	245	6.28	3.19	6.05	4.16	5.82	5.05	The same of	-
100V	1.0MPa-100A	1580	7.57	2.66	77:37	3 43	6.55	4.66	6.33	55888	6.10	640
- 1		1700	8.00	2.87	7/9/	38/996	7.16	4.79	6.95 7368	66.19	6.73	7.27
- 1			Statement of the last	3.03	86229	44201	7.60	5.97	7:38 7:68	5555B	7.15	7.74
		1890	8.47									

>>SSR-V 真空性能表

>> TYPE SSR-V VACUUM PERFORMANCE TABLE

0.7			1.5kW	2 3	2kW E	3kW 37kW	4k	kW =	5.5kW		.5kW _	11kW 90kW
		真空度 Vacuum	-100n	nmHg	-150n	nmHg	-200n	nmHg	-250n	nmHg	-300n	nmHg
型式	口径	pressure	-1360	mmAq	-2040	immAq	-2720	mmAq	-3400	mmAq	-4080	mmAq
Туре	Bore	转速 rpm	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La
		980	6.24	2.27	5.97	3.17	5.70	4.07	5.42	4.97	5.14	5.86
		1050	6.75	2.60	6.48	3.53	6.21	4.47	5.94	5.41	5.66	6.35
	吸入口径	1200	7.77	3.26	7.51	4.31	7.25	5.37	6.98	6.42	6.69	7.47
	5K-100A	1310	8.57	3.71	8.36	4.87	8.13	6.02	7.88	7.18	7.61	8.33
SSR-		1410	9.27	4.05	9.05	5.29	8.82	6.53	8.57	7.77	8.30	9.00
125V	吐出口径	1470	9.70	4.37	9.48	5.66	9.25	6.95	9.02	8.23	8.78	9.21
1204	1.0MPa-125A	1550	10.30	4.62	10.10	5.98	9.82	7.34	9.58	8.70	9.33	10.10
		1650	11.00	5.18	10.70	6.64	10.50	9.11	10.30	9.58	10.10	11.10
		1770	11.80	5.70	11.50	7.23	11.30	8.75	11.10	10.30	10.90	11.80
		1880	12.50	6.25	12.30	7.86	12.00	9.46	11.80	11.10	11.60	12.70
		810	12.60	3.51	12.20	4.83	11.80	6.72	11.40	8.61	11.00	10.50
		870	13.80	4.12	13.30	6.00	12.80	7.80	12.30	9.77	11.80	11.70
		990	15.60	4.46	15.20	6.58	14.70	8.70	14.30	10.80	13.80	12.90
	吸入口径	1120	17.70	6.61	17.30	8.94	16.80	11.30	16.30	13.60	15.80	15.90
	5K-125A	1200	19.10	7.57	18.70	9.93	18.20	12.30	17.80	14.70		
SSR-	吐出口径	1270	20.30	8.40	19.90	10.80	19.50	13.20			18.70	18.00
150V	1.0MPa-150A	1410	22.50	10.50	22.10	13.20	21.70	15.90	21.30	18.60	20.80	21.30
1001	I.UMI a-IJUN	1540	24.60	12.50	24.20	15.40	23.70	18.30	23.20	21.20	22.70	24.00
		1670	26.50	14.30	26.00	17.40	25.50	20.50	25.00	23.50	24.50	26.60
		1780	27.80		27.30	19.20	26.80	22.50	26.30	25.80	25.70	29.10
		970	21.19	8.09	20.43	11.19	19.57	13.69	18.86	15.85	18.01	18.15
		1110	24.84	10.07	23.90	13.81	23.10	16.65	22.55	19.14	21.51	21.70
	吸入口径	1180	26.63	11.46	25.75	14.56	24.86	17.75	24.28	20.53	23.42	23.42
SSR-	5K-150A	1240	28.18	11.96	27.24	15.70	26.55	19.01	25.88	21.74	24.96	25.15
175V	吐出口径	1400	32.18	14.20	31.32	18.48	30.57	22.64	29.95	25.53	29.08	29.27
1/5/	1.0MPa-200A	1520	35.15	16.11	34.25	20.99	33.65	24.85	32.91	28.58	32.03	32.33
		1620	37.48	18.02	36.62	23.57	35.79	27.67	35.13	31.53	34.23	35.84
		1730	40.00	20.22	39.12	26.00	38.32	30.85	37.66	35.35	36.67	39.61
		810		10.38		14.89	29.01	18.96	28.16	23.20	27.08	27.43
		900	34.92		33.98		33.17	22.01	32.28	26.82	31.16	31.49
	吸入口径	980	38,39	14.40	37.24	19.66	36.85	24.80	35.97	30.06	34.78	35,14
SSR-	5K-200A	1070	42.37		41.02	21.61	40.97	27.72	40.09	33.57	38.86	39.32
	吐出口径	1150	45.90	18.61	45.25	24.06	44.65	30.15	43.72	36.35	42.50	42.76
200V	1.0MPa-200A	1230	49.01	20.58	48.38	26.74	47.79	33.47	47.02	40.25	45.87	46.83
	I.UMPa-2UUA	1310	52.06	23.03	51.51	29.61	50.95	36.65	50.33	43.84	49.24	50.97
		1390	55.69	25.15	55.19	32.33	54.59	39.86	53.61	47.40	52.64	55.03
	ryspine.	1480	58.65	27.52	58.17	34.85	57.64	43.13	57.30	51.20	56.46	59.06

SSR-VHB型 真空性能表 TYPE SSR-VHB VACUUM PERFORMANCE TABLE 0.75kW 1 1kW 1 15kW 2 2kW 3kW 4kW 5 5kW 7 5kW 11kW 15kW 5 5kW 7 5kW 90kW

Os 各种型度下的风能(mi/min) La: 玩闹J./JikW) Nacuum Volume at each Discharge pressure(mi/min) · La: 死職J./JikW) Required electric power(kW)

164 AN	1157	真空度 Vacuum	-100n		-150n		-200m		-250m		-300n		-330m		真空度 Vacuum
型式	日径	pressure	-1360	mmAq	-2040	pAmm	-2720	mmAq	-3400	mmAq	-4080	mmAq	-4488	pAmm	pressur
Type	Bore	40xiii rpm	Qs	La	Qs	La	Qs	La	Qs	La	Q _B	48	Qs	La.	特速 rpm
	-	1100	1.12	0.36	1.03	0.55	0.94	0.74	0.88	0.93			-		1100
		1230	1.29	0.47	1.20	0.67	1.10	0.88	1.02	1.08	10000				1230
	100 h 110 m	1350	1.45	0.58	1,36	0.80	1.26	1.02	1.16	1.24	-			-	1350
	吸入口径	1470	1.62	0.74	1.54	0.96	1.45	1.18	1.35	1.40	1.25	1.62	1.21	1.75	1470
SSR-	5K-40A	1560	1.76	0.86	1.69	1.09	1.60	1.31	1.50	1.54	1.37	1.76	1.31	1.89	1560
	明問目径	1660	1.88	0.93	1.81	1.17	1.71	1.41	1.61	1.66	1.48	1.90	1.42	2.04	1660
50V H	1.0MPa-50A	1750	1.99	0.99	1.92	1.27	1.82	1.50	1.71	1.76	1.58	2.02	1.52	2.17	1750
- 1		1850	2.12	1.13	2.05	1.39	1.95	1.65	1.84	1,91	1.71	2.17	1.64	2.32	1850
		1666	234	138	2.20	1.55	2.10	1.81	1.99	2.08	1.90	2.34	1.85	2.50	1960
		2120	246	156	2.38	1.84	2.27	2.21	2.15	2.40	2.02	2.67	1.95	2.83	2120
		2900	2.67	1.70	2.59	2.10	2.48	2.50	237	2.70	2.27	3.05	2.23	3.21	2300
-		1100	157	0.75	1.43	0.98	1.30	1.21	1.16	1.45	2.21	0.00	6.60	9.81	1100
		1240	1.83	0.84	1.69	1.09	1.64	1.35	1.40	1.61				-	1240
	聯入口社	1360	2.08	0.95	1.93	1.24	1.78	1.52	1.64	1.81					1360
	5K-50A	1460	2.27	1.05	2.13	1.35	1.99	1.65	1.84	1.96	1.70	2.26	1.61	2.44	1460
SSR-	地出口径	1550	2.47	1.13	2.32	1.45	2.17	1.77	2.03	2.09	1.88	2.41	1.80	2.60	1550
		1670	270	124	2.56	1.58	2.42	1.93	2,27	2.28	2.13	2.62	2.05	2.83	1670
HVCC	1.0MPa-65A	1770	2.90	1.32	2.76	1.69	2 62	2.06	2.49	2.43	2.35	2.79	2.27	3.03	1770
		1860	3.08	1.44	2.94	1.82	2.80	2.20	2.65	2.59	2.51	2.98	2.44	3.20	1990
		1960	3.33	1.60	3.18	2.00	3.03	2.41	2.59	2.61	2.74	3.23	2.72	3.47	1960
	1	2150	3.57	1.84	3.43	2.28	3.30	2.72	3.16	3.16	3.02	3.60	2.02	3.86	2150
		2300	3.80	2.10	3.65	2.54	3.49	3.05	3.34	3.51	3.18	3.95	3.09	4.21	2300
-	-	1130	2.92	1.01	2.79	1.46	2 65	190	2,50	2.35	0.10	0,00	0.00		1130
		1240	3.29	1.17	3.15	1.66	3.00	2.14	2,85	2.63	2 69	3.11	2.62	3.40	1240
		1300	3.49	1.30	3.35	1.60	3.20	2.30	3.05	2.80	2.89	3.30	2.82	3.60	1300
		1370	3.73	1.44	3.59	1.96	3.44	2.49	3.29	3.01	3 13	3.53	3.03	3.84	1370
	吸入风袖	1470	4.03	1.60	3.89	2.16	3.74	2.73	3.59	3.30	3.43	3.86	3.35	4.20	1470
SSR-	5K-65A	1970	4.35	1.82	4.21	2.40	4.07	2.99	3.92	3.57	3.77	4.16	3.66	4.51	1570
	akileresi.	1660	4.64	2.01	4.51	2.62	4.37	3.24	422	3.85	A.66	8.46	3.96	A.62	1660
30VH	1.0MPa-80A	1759	4.95	2.23	4.61	2.65	4.67	3.48	4.53	4.11	4.36	4.78	427	5.10	1750
	LUMP BOUN	1840	5.23	2.42	5.10	3.09	4.96	3.75	4.61	4.42	4.65	5.00	4.55	5.48	1840
		1930	5.53	2.64	5.40	3.33	5.26	4.06	6.11	4.72	4 9 9	5.41	4.86	5.62	1950
		2100	6.09	2.68	5.96	3.65	6.82	4.42	5.65	5.19	5.49	5.96	5.41	8.42	2100
		2300	6.75	3.27	6,62	4,12	6.48	4.96	6.31	5.80	6.15	9.66	6.07	7.14	2300
_		1070	A.35	1.56	4.08	2.24	3.80	2.92	3.57	3.60	0.12	0.00	0.01	1.14	1070
		1160	A.83	1.80	4.56	2.53	4.29	3.27	4.03	4.04	3.78	4.72	3.03	5.15	1160
		1240	5.27	1.97	4.99	2.74	4.72	3.52	4.48	4.29	4.29	5.07	4.07	5.52	1240
		1320	5.80	2.09	6.54	2.94	5.27	3.79	5.04	4.64	4.74	5.48	4.56	6.00	1320
SSR-	吸入日餐	1480	5.51	2.27	6.28	3.19	6.05	A.14	5.62	5,05	5.60	5.97	5.47	6.51	1460
	5K-89A	1580	6.99	2.45	6.77	3.43	6.55	A.44	6.33	5.44	6.10	6.40	5.96	6 98	1560
00VH	叶出口稳	1700	7.57	2.66	7,37	3.72	7.15	4.78	6.95	5.86	6.73	6.92	6.60	7.56	1700
	1.0MPa-100A	1790	8.00	2.87	7.81	3.55	7.60	5.07	7.38	6.19	7.15	7.27	7.01	7.93	1790
		1890	8.47	3.03	8.29	421	8.09	5.59	7.88	6.55	7.69	7.74	7.53	8.45	1890
		2010	9.09	3.23	6.92	4.48	8.75	5.74	8.57	7.00	8.38	8.26	6.27	9.03	2010
		2200	10.07	3.56	9.91	5,00	9.63	6.37	9.33	7.79	9.98	9.13	8.89	9.95	2200
		转逐	-	-	_	_	-	- Aller		1	-				特選
型式	日径	(gen)	Q6	1.0	Q6	La	Qs	La	Qs	La	- 88	-la	Q#	La	fgirri
		Vacuum)	of the banks of the last	mmAq		immAq		pAmml	-3400	DmmAq	:468	Bennag	-4466	immAq	(LGR)
Type	Bore	pressure	-100h	nmMz	-156h	nmi4s	-200n	nintife:	-2504	rimH=	-300	mmHr.	-330r	-Hone	pressur

1.1kV		5kW =	2.2k	_	3kW 37kW		4kW 45kW		5.5kW	_	5kW [11kV	_	15kW	,
		真空度	-100n	nmHz	-150m	mHg	-200m		-250m	ımHg	-300n	nmHg	-330m	mHg	真空度
型式	口径	Vacuum pressure	-1360	mmAq	-2040	mmAq	-2720	mmAq	-3400	mmAq	-4080	mmAq	-4488n	nmAq	Vacuur pressur
Туре	Bore	转速 rpm	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	转速 rpm
		980	6.24	2.27	5.97	3.17	5.70	4.07	5.42	4.97	5.14	5.86	5.01	6.40	980
		1050	6.75	2.60	6.48	3.53	6.21	4.47	5.94	5.41	5.66	6.35	5.61	6.89	1050
	吸入口径	1200	7.77	3.26	7.51	4.31	7.25	5.37	6.98	6.42	6.69	7.47	6.58	8.08	1200
	5K-100A	1310	8.57	3.71	8.36	4.87	8.13	6.02	7.88	7.18	7.61	8.33	7.44	9.00	1310
SSR-	吐出口径	1410	9.27	4.05	9.05	5.29	8.82	6.53	8.57	7.77	8.30	9.00	8.15	9.73	1410
125VHB	1.0MPa-	1470	9.70	4.37	9.48	5.66	9.25	6.95	9.02	8.23	8.78	9.50	8.50	10.28	1470
	125A	1550	10.37	4.62 5.18	10.10	5.98 6.64	9.82	7.34 8.11	9.58	9.58	9.33	10.10	9.13	10.92	1550
1	1201	1770	11.80	5.70	11.50	7.23	11.30	8.75	11.10	10.30	10.10	11.10	10.38	12.71	1650
- 1		1880	12.50	6.25	12.30	7.86	12.00	9.46	11.80	11.10	11.60	12.70	11.16	13.66	1880
- 1		2000	13.37	6.84	13.17	8.55	12.85	10.27	12.51	11.97	12.21	13.69	12.04	14.72	2000
		810	12.60	3.51	12.20	4.83	11.80	6.72	11.40	8.61	11.00	10.50	10.75	11.61	810
		870	13.80	4.12	13.30	6.00	12.80	7.80	12.30	9.77	11.80	11.70	11.50	12.74	870
		990	15.60	4.46	15.10	6.58	14.60	8.70	14.20	10.80	13.80	12.90	13.60	14.17	990
	吸入口径	1120	17.70	6.61	17.30	8.94	16.80	11.30	16.30	13.60	15.80	15.90	15.55	17.30	1120
SSR-	5K-125A	1200	19.20	7.57	18.70	9.93	18.20	12.30	17.80	14.70	17.30	17.00	16.93	18.48	1200
150VHB	吐出口径	1270	20.30	8.40	19.90	10.80	19.50	13.20	19.10	15.60	18.70	18.00	18.09	19.42	1270
	1.0MPa-	1410	22.50	10.50	22.10	13.20	21.70	15.90	21.30	18.60				22.90	1410
	150A	1540	24.70	12.50	24.20	15.40	23.70	18.30				24.00			1540
	Tours	1670	26.50	14.30	26.00	17.40	25.50	20.50			24.50	26.60	24.22	28.41	1670
		1780	27.80	15.90	27.30	19.20					25.70	29.10	25.51	31.07	1780
		1900	29.25	17.77	28.81	21.09	27.91	24.83	27.34		26.72	32.26	26.47	33.93	1900
		810	31.07	10.38	29.92	14.89	29.01	18.96			27.08	27.43	25.72	29.85	810
	吸入口径	900	34.92	12.49	33.98	17.37			32.28	26.82	31.16	31.49	29.76	34.30	900
	5K-200A	1070	42.37	16.59	41.02	21.61			40.09	33.57	38.86	39.32	36.37	42.81	980
SSR-	吐出口径	1150	45.90	18.61	45.25		44.65	30.15	43.72	36.36	42.50	42.76	40.96	46.16	1150
200VHB	1.0MPa-	1230	49.01	20.58	48.38	26.74	47.79	33.47	47.02	40.25	45.87	46.83	43.78	50.74	1230
200VHB	200A	1310	52.26	23.03	51.61	29.61	50.95	36.65	50.33	43.84	49.24	50.97	46.60	55.13	1310
	Lour	1390			54.65	32.33	54.11	39.86	53.61	47.40	52.64	55.06	49.44	59.57	1390
		1480			58.17	34.85	57.64	43.13	57.05	51.20	56.46	59.06	52.61	63.76	1480
		900	55.7	20.72	53.24	27.1	51.28	36.23	49.15	43.78	47.15	49.50	46.73	54.75	900
000		980	61.43	22.05	58.95	30.98	57,05	40.33	55.03	48.83	53.00	55.51	52.68	60.92	980
SSR-	250A	1070	67,72	25.83	65.3	34.5	63.52	45.88	61.30	54.56	59.60	61.53	59.35	67.84	1070
250VHB	2504	1160	73.95	28.98	71.64	38.77	69.99	50.92	68,15	60.23	66.10	67.65	65.90	74.84	1160
		1240	79.59	31.64	77.19	41.96	75.40	55.50	73.20	65.27	71.60	73.48	71.10	81.07	1240
		1350	87.31	35.61	85.23	46.68	83.60	62.10	82.00	72.33	79.80	81.00	79.50	89.16	1350

0.5566	w		TESKW ZWW			1:160		_	4.0	KW			Os:	物的 例例	en ehi	(4)		na(27710 N/00)	N)	
1							- 4	1		III. Disc	harpe	BE. Pres	ssure	加	(Kg)f/er	11)				
# 式	明發	彩 遠	0.	10	0.	15	0.	20	0.	25	0.3	30	0.3	35	0.1	10	0.4	13	O.	50
Type	Bore	rpm	9.8	kPa	14.	7kPa	19.6	kPa	24.5	5kPa	29.4	kPa	34.3	kPa	39.	2kPa	44.	lkPa	49.0	kPa
			Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La	Qs	La
		1750	160	0.20	150	0.22	140	0.24	130	0.26	120	0.28	110	0.30	100	0.32				
SSR -20T	3/ ₄ B	2000	200	0.23	190	0.25	180	0.27	170	0.29	160	0.31	150	0.33	140	0.35	130	0.37		
30K -201	(20A)	2250	240	0.26	230	0.29	220	0.31	210	0.33	200	0.35	190	0.38	180	0.40	170	0.43	160	0.46
		2500	270	0.29	260	0.32	250	0.34	240	0.37	230	0.39	220	0.42	210	0.44	200	0.47	190	0.50
		1750	210	0.23	195	0.25	180	0.27	265	0.30	150	0.32	135	0.35						
SSR -25T	18	2000	270	0.26	255	0.29	240	0.31	225	0.34	210	0.37	195	0.40	180	0.43	160	0.46		
0011-201	(25A)	2250	310	0.30	295	0.33	280	0.35	265	0.39	250	0.42	235	0.46	220	0.49	200	0.53		
		2500	360	0.33	345	0.36	330	0.39	315	0.43	300	0.46	285	0.50	270	0.54	250	0.58	230	0.62
		1750	360	0.27	340	0.31	320	0.34	300	0.38	280	0.42	260	0.46	240	0.50				
	411.00	2000		0.24	420	0.35	400	0.39	380	0.44	360	0.48	340	0.53	320	0.57				
SSR -32T	11/ ₄ B	2000	440	0.31		0.00		0.00			-		_		-					-
SSR -32T	(32A)	2250	520	0.35	500	0.40	480	0.44	460	0.49	440	0.54	420	0.59	400	0.64	370	0.70		
SSR -32T		-				-		0.44			440 520	0.54	420 500	0.65 选M Sec	480 状态M ion-ph	0.71	450 (min)	0.70 0.78	420 nin)	0.86
SSR -32T		2250	520	0.35	500	0.40	480	0.49	460	0.49 0.55	520	0.60	500 Cas	0.65 进M Sect 所属 Racq	# # # # # # # # # # # # # #	0.71 (Kn/m²) ase Air W) lectric	450 (min)	0.78		0.86
SSR -32T	(32A)	2250 2500	520 600	0.35	500	0.40	480	0.49 t	460	0.49 0.55	520 charge	0.60	500 Qs Las	0.66 法M Succ 所以 Racq	状态域 ion-ph 动力(k uired e (kgf/or	0.71 (Wx/m²) ase Air W) lectric m²)	450 (min) r Volum power	0.78 ne(m³/m (kW)	nin)	
	(32A)	2250	520	0.35	500	0.40	480 560	0.49 t	460 540	0.49 0.55 Itl Dis-	520 charge	0.60	500 Cas Las: soure	0.65 場場 State 所能 Rasq 力	状态域 ion-ph 动力(k uired e (kgt/or	0.71 (Wx/m²) ase Air W) lectric m²)	450 (min) r Volum power	0.78 ne(m³/m (kW)	nin)	50
型 政	(32A)	2250 2500	520 600 0.	0.35 0.39	500 580	0.40 0.44	480 560	0.49 t 20 skPa	460 540 0. 24.	0.49 0.55 B) Dis- 25 5kPa	520 charge 0:	0.60 FE Pre 30	500 Uni	0.66 法M Succ 所以 Racq	#表述ion-ph 动力(k uired e (kgt/or	0.71 (Walm?) ase Air W) lectric m²) 40	450 (min) r Volun power	0.78 ne(m²/m (kW)	0. 49.0	50 kiPa
型 政	(32A)	2250 2500	520 600 0. 9.8 Qs	0.35	500	0.40	480 560	0.49 t	460 540	0.49 0.55 Itl Dis-	520 charge	0.60	500 Cas Las: soure	0.65 法M State 所能 Rasq 力 35	状态域 ion-ph 动力(k uired e (kgt/or	0.71 (Wx/m²) ase Air W) lectric m²)	450 (min) r Volum power	0.78 ne(m³/m (kW)	nin)	50 N/Pa
恒 读l Type	山後 Bore	2250 2500	520 600 0. 9.8 Qs	0.35 0.39 10 kPa La	500 580 0 14. Qs	0.40 0.44 15 7kPa La	480 560 19.6 Os	0.49 t 20 kPa La	0. 24: Qs	0.49 0.55 Dis- 25 5kPa	520 charge 0: 29:	0.60 FE Pre 30 tkPa La 0.52	500 Uni	0.65 法M State 所能 Rasq 力 35	状态域 ion-ph 动力(k uired e (kgt/o	0.71 (Walm?) ase Air W) lectric m²) 40	450 (min) r Volun power 0.4 44: Qs	0.78 ne(m²/m (kW)	0. 49.0	50
型 政	(32A)	2250 2500 納 油 rpm	0. 9.8 0.45	0.35 0.39 10 kPa La 0.32	0 14 0s 0.42	0.40 0.44 15 7kPa La 0.36	480 560 0 19.6 0s 0.39	0.49 t 20 SkPa La 0.40	0. 24: 0s 0.36	0.49 0.55 Disc 25 5kPa La 0.46	520 charge 0: 29: 0s 0.33	0.60 Fre 30 tkPa La 0.52	500 Cas Las: soure 0: 344 Qbs	0.66 法M Succi 所能 Racq 力 35	状态域 icon-ph 动力(k uired e (kgt/or の 38)	0.71 (fixim²) ase Air W) lectric m²) 40 256Pa La	450 (min) r Volun power 0.4 44.	0.78 ne(m³/m (kW)	0. 49.0 Qs	50 MPa La
恒 读l Type	(32A) 山後 Bore	2250 2500 第 密 rpm	0.98 0.45 0.65	0.35 0.39 10 kPa La 0.32 0.40	0 14 Qs 0.42 0.62	0.40 0.44 15 7kPa La 0.36 0.45	480 560 0 19.6 0s 0.39 0.59	0.49 t 20 sxPa La 0.40 0.50	0. 24: 0s 0.36 0.56	0.49 0.55 http://doi.org/10.55 5kPa La 0.46 0.58	520 charge 0: 29: 0:33 0.53	0.60 Fre 30 tkPa La 0.52 0.65	500 Uas source 0.3 344 Qbs	0.66 場場 第86 第88 第88 第88 第88 第88 第88 第88 第88 第88	状态域 icon-ph 动力(k uired e (kgt/or の 38)	0.71 (fixim²) ase Air W) lectric m²) 40 256Pa La	450 (min) r Volun power 0.4 44: Qs	0.78 ne(m³/m (kW)	0.49.0 Qs	50 MPa La
恒 读l Type	(32A) 山後 Bore	2250 2500 第 库pm 1000 1250 1500	0. 9.8 0.45 0.65	0.35 0.39 10 k/Pa La 0.32 0.40 0.48	00 580 14. Qs 0.42 0.62	0.40 0.44 0.44 La 0.36 0.45	480 560 0 19.6 0.39 0.59	0.49 t 20 skPa La 0.40 0.50	0. 24: 0.36 0.56 0.75	0.49 0.55 H) Dis- 25 5kPa La 0.46 0.58	520 Charge 0.29.0 Qs 0.33 0.53	0.60 Fre 30 tkPa La 0.52 0.65	500 Gas Lan	0.66 法M State 所能 Raseq 力 35 HAPB 以為	## 2514 fon-ph	0.71 (\$\text{\$\}\$}\eta}\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$	450 (min) r Volun power 0.4 44. Qs 0.46 (0.86	0.78 ne(m³/m (kW) 15 1kPa La 0.90	0.43 0.62	50 lkPa La 0.91
设 家 Type SSR-40T	(32A) 山後 Bore	2250 2500 2500 1000 1250 1500 1750	0.984 0.84 0.84 1.04	0.35 0.39 10 k/Pa La 0.32 0.40 0.48	0 14. Qs 0.42 0.62 0.81	0.40 0.44 15 7kPa La 0.36 0.45 0.54	480 560 0 19.6 0 39 0 59 0 78	0.49 t 20 0.40 0.50 0.60 0.70	0. 24. 0s 0.36 0.56 0.75	0.49 0.55 Bl Disc 25 5kPa La 0.46 0.58 0.69	520 0.29.4 0.33 0.53 0.72	0.60 FE Pre 330 La 0.52 0.65 0.78	500 Gas Lan	0.65 法以 \$66 所 所 和 和 0.75 0.667 11001	## \$10	0.71 (能/m²) ase Ai W) lectric m²) 40 22倍a 13 0.80	450 (min) r Volun power 0.4 44. Qs 0.46 (0.86	0.78 ne(m³/m (kW) 15 1kPa La 0.90	0.43 0.62	50 lkPa La 0.91
恒 读l Type	(32A) 	2250 2500 2500 1000 1250 1500 1750	0. 9.8 Qs 0.45 0.65 0.84 1.04	0.35 0.39 10 k/Pa La 0.32 0.40 0.48 0.56	0 14 0s 0.42 0.62 0.81 1.01	0.40 0.44 0.44 15 7kPa La 0.36 0.45 0.63	480 560 0 19.6 0 0 39 0 0 59 0 0 78 0 0 98	0.49 tt 20 0.40 0.50 0.60 0.70	0. 24. 0. 0.36 0.56 0.75 0.95	0.49 0.55 bip Disc 25 0.46 0.58 0.69 0.81	520 charge 0. 29. Qs 0.33 0.53 0.72 0.92 0.65	0.60 Pre 30 14kPa La 0.52 0.65 0.78 0.91	500 Gas Las source 0:344 Gas 0:090 0:090 0:090	0.65 港州 Succi 所属 和20 力 35 場(Pa 山油 0.758 0.687 11.001	# 480 # 480	0.71 (形/m²) ase Ai W/) (lectric 2分子a 40 2分子a 10.80 7.56	450 (min) r Volun power 0.44. Qs 0.46 (0.85	0.78 0.78 (kW) (kW) 15 15 16Pa 1.07 1.25	0.43 0.62 0.82	50 kPa La 0.91 1.16
设 家 Type SSR-40T	(32A) 山 後 Bore	終 密 rpm 1000 1250 1000 1250	0.45 0.65 0.84 1.04 0.82	0.35 0.39 10 8/Pa La 0.32 0.40 0.48 0.56 0.64 0.80	0 14. Qs 0.42 0.62 0.81 1.01 0.78	0.40 0.44 0.44 15 7kPa La 0.36 0.45 0.63 0.72	480 560 0 19.6 0.39 0.78 0.73 1.13	0.49 tt 20 5xPa La 0.40 0.50 0.60 0.70 0.80	0. 24. 0. 0.36 0.56 0.75 0.69	0.49 0.55 http://doi.org/10.55 Dis-25 5kPa La 0.46 0.58 0.69 0.81	520 Charge 0.29.0 0.33 0.53 0.72 0.92 0.65 1.05	0.60 Pre Pre 0.52 0.65 0.78 0.91	500 Cas Las. Secure 0:3543 Qbs 00661 00700 00690	0.65 当时 第6日 所信 第6日 第6日 第6日 第6日 第6日 第6日 第6日 第6日	## 5 / 4 / 5 / 4 / 5 / 4 / 5 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6	0.71 (%/m²²) ase Ai wy) lectric m²) 40 2/k²a La 0.80 1.11 11.28	450 (min) volun power 0.44. Qs 0.45 0.85	0.78 0.78 0.78 0.78 15 16.Pa 1.07 1.25	0.43 0.43 0.62 0.82	50 lkPa La 0.91 1/8 1.31
设 家 Type SSR-40T	(32A) 山 後 Bore	2250 2500 2500 1000 1250 1500 1750 1000 1250 1500	0.988 0.65 0.84 1.04 0.82 1.22	0.35 0.39 10 k/Pa La 0.32 0.40 0.48 0.56 0.64 0.80	00 14 Os 0.42 0.62 0.81 1.01 0.78 1.18	0.40 0.44 15 7kPa La 0.36 0.45 0.54 0.63 0.72 0.90	480 560 0 19.6 0 39 0 59 0 78 0 98 0 73 1.13 1.52,	0.49 tt 20 5xPa La 0.40 0.50 0.60 0.70 0.80 1.00 1.00	0. 24: 0s 0.36 0.56 0.75 0.95 1.09	0.49 0.55 Bill Dis- 25 5kPa La 0.46 0.58 0.69 0.81 1.138 1.88	520 charge 0.29. Qs 0.33 0.53 0.72 0.92 0.65 1.05 1.44	0.60 Pre Pre 330 La 0.52 0.65 0.78 0.91 1.04 1.30	500 Cas Las. source 0.343 Cas 0.059 0.0590 0.0590 0.0081 19.004	0.65 塗M State 所能 Recq 力 1078 0.087 11001 1116 1345 1746	## 5 480 ##	0.71 (%/m²/ ase A/ w/) lectric 24/2-a 0.30 7.36 7.37 7.28	450 (min) v Volun power 0.4 44. Qs 0.46 0.85 0.85	0.78 0.78 0.78 15 15 16Pa La 0.90 1.07 1.25	0 49.0 Qs 0.62 0.62 0.62	50 kPa La 0.91 1.90 1.31
Type SSR -40T SSR -50T	(32A) 山 後 Bore	2500 2500 2500 1000 1250 1500 1750 1500 1750 1750 1750	0.988 Qs 0.45 0.65 0.84 1.04 0.82 1.22	0.35 0.39 10 kPa La 0.32 0.40 0.48 0.56 0.64 0.80 0.96	00 14 Qs 0.42 0.62 1.01 0.78 1.18 1.57	0.40 0.44 15 7kPa La 0.36 0.45 0.54 0.63 0.72 0.90 1.08, 1.26	480 560 0 19.6 0 39 0 78 0 98 0 73 1 152 1 1992 0 7944	0.49 tt 20 5xPa La 0.40 0.50 0.60 0.70 0.80 1.00 1.00	0. 24. 26. 0.36 0.56 0.75 0.69 1.09	0.49 0.55 Bill Dis- 25 5kPa La 0.46 0.58 0.69 0.81 1.138 1.88	520 0.1 29.0 0.3 0.72 0.92 0.65 1.05 1.44	0.60 Pre 30 La 0.52 0.65 0.78 0.91 1.06 1.30	500 Cos Las Secure 0.3 343 Cos 00551 00700 00590 00661 11004 11580	0.65 場外 第488 所 第888 第888 10 10 10 11 11 11 11 11 16 16 16 16 16	480 株态iden-ph 动力(k uired e (kgt/o 0 38 0 48 0 67 0 57 0 57 0 57 1 78	0.71 (依/m²) ase A/w W) lectric m²) 40 2569a 1.77 17.28 19.60 19.60 19.60 19.60	450 (min) v Volun power 0.4 44. Qs 0.46 0.85 0.85	0.78 0.78 0.78 15 15 16Pa La 0.90 1.07 1.25	0 49.0 Qs 0.62 0.62 0.62	50 kPa La 0.91 1.90 1.31
设 家 Type SSR-40T	(32A) 山北 後 Bore	2500 2500 2500 1000 1250 1500 1750 1500 1750 1000	0. 9.88 Qs 0.45 0.65 0.84 1.04 0.82 1.22 1.61 1.19	0.35 0.39 10 kPa La 0.32 0.40 0.48 0.56 0.64 0.80 0.96	00 14. Qs 0.62 0.81 1.01 0.78 1.18 1.57 1.97	0.40 0.44 15 7kPa La 0.36 0.45 0.54 0.63 0.72 0.90 1.08 0.90 1.13	480 560 0 19.6 0 39 0 59 0 73 1.13 1.52 1/92 0/94 11/46	0.49 20 5xPa La 0.40 0.50 0.60 0.70 0.80 1.00 1.20 11,00	0. 24. Cs 0.36 0.75 0.95 1.48 1988 0.86	0.49 0.55 bip 0.55 5kPa La 0.46 0.58 0.69 0.81 1.15 1.38 1/89 1.15	520 charge 0. 29. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0.60 Pre 30 0.65 0.78 0.91 1.04 1.30 1.58 1.30 1.68	500 Gas Lan Secure 0.3 343 Qbs 0.691 0.090 0.091 11/90 10/90	0.65 遠外 多いだ 所能 和な の78 0.78 0.78 11001 1116 有74 476 176 176 176 176 176 176 176 1	株 5/4 (ion-ph 动力(k 动力(k 或) (kgt/o 0 36 0 57 0 57 0 57 0 57 0 57 0 57 0 57 0 5	0.71 (他/m²) ase Ai W) lectric m²) 40 2569a 1. m 17.28 19.80 19.80	450 (min) r Volun power 0.4 44. Os 0.45 0.85 0.85	0.78 0.78 0.78 0.90 0.90 1.07 1.25 1.79 2.14 2.49	0.43 0.62 0.62 0.62 1.28	50 lkPa La 0.91 1.16 1.31 199/ 2.37

0.55AV	v			MAN	<u></u>	1.141							Qs: La:	Suct Mills	的力(K)	ase Air W)	Volum	ne(£/mir	1)	
1.5KW			-50mr	-11-	-75m			mmHz	-125m	-11-	450		175	Requ	ared el				200	-11
型式	田袋	真空度 Wesum				_				-	-150m	_			-200n		-225n			mmHg
Type	Bore	Pressure Proprii		pAme		mmAq		mmAq		mmAq		mmAq		mmAq	-2720	-		mmAq		mmAq
		1750	Qs 165	0.15	Qs 150	0.16	Qs 135	0.18	Qs 120	0.19	Qs 105	La 0.21	Qs 90	0.22	Qs	La	Qs	La	Qs	La
		2000	215	0.17	200	0.18	185	0.19	170	0.19	155	0.21	140	0.22	125	0.25		-	-	-
SSR -20VT	3/ ₄ B (20A)	2250	245	0.17	230	0.10	215	0.19	200	0.24	185	0.26	170	0.24	155	0.30	140	0.32	_	
	lend	2500	285	0.15	270	0.21	255	0.30	240	0.32	225	0.26	210	0.26	195	0.38	180	0.40	165	0.42
		1750	255	0.19	235	0.21	215	0.23	195	0.25	180	0.27	165	0.29	150	0.31	100	0.40	100	0.42
5	1B	2000	320	0.22	300	0.25	280	0.27	260	0.30	240	0.33	225	0.35	210	0.38	195	0.40		
SSR -25VT	(25A)	2250	355	0.24	335	0.27	315	0.30	295	0.33	280	0.36	260	0.38	145	0.41	230	0.43	215	0.46
		2500	390	0.28	370	0.31	350	0.34	330	0.37	315	0.40	300	0.43	285	0.46	270	0.49	255	0.52
		1750	415	0.24	375	0.27	335	0.30	305	0.33	275	0.36	250	0.40	230	0.43	210	0.46	-	
	17,B	2000	530	0.25	490	0.29	450	0.33	410	0.36	375	0.40	340	0.44	310	0.47	285	0.51		
SSR -32VT	(32A)	2250	610	0.29	570	0.33	530	0.37	490	0.41	450	0.45	415	0.49	385	0.53	360	0.57	330	0.61
	1	2500	685	0.31	645	0.36	605	0.41	565	0.45	525	0.50	485 Qs	0.55	445	0.59		0.64	395	0.68
												0.50	485 Os La:	D.55 进域 Suct 所以 Req	状态は ion-phi 动力(ki i/red ei	0.59	min) Volum power	0.64 ne(m³/m (kW)	ún)	0.68
型式	II &	育空度 Vacuum	-50m	mH _K	-75m	nmHg	-100r	mmHg	-125n	mHg	-150n	0.50	485 Qs La:	D.55 进域 Suct 所谓 Req	##5 状态は ion-phi ion-phi iired ei	0.59	min) Volum power	0.64 ne(m³/n (kW)	-250r	0.68
型 式 Type	대 & Bore	賞空度	-50m	mH _K	-75m	mHg mmAq	-100r	pAmm	-125n	mHz nmAq	-150n	0.50 nmHs mmAq	485 Os La:	D.55 进场 Suct 所识 Req hmHg	445 状态(A, ion-ph おカル ired ei -200r -2720	0.59 Signal of the control of the co	min) r Volum power -225r -3060	0.64 ne(m³/n (kW) mmHg mmAq	-250r -3400	0.68
	77 200	育空度 Vacuum	-50m -680n Qs	mH _K	-75m	nmHg	-100r	mmHg	-125n	mHg	-150n	0.50 nmHs mmAq La	485 Qs La:	D.55 进域 Suct 所谓 Req	#45 状态は ion-phi ion-phi ired ei	0.59	min) Volum power	0.64 ne(m³/n (kW)	-250r	0.68
Туре	Bore	育空度 Vacuum pressure 新 _{ppf}	-50m -680n Qs	mH _K nmAq La	-75m -1020 Qs	nmHg mmAq La	-100r -1360 Qs	nmHg mmAq La	-125n -1700 Qs	nmAq La	-150n -2040 Qs	0.50 nmHs mmAq La	485 Cs La: -175r -2380 Qs	0.55 思域 Suct 所识 Req mmHg	状态は 約万(k) ion-phi 均万(k) iired ei -200r -2720 Qs	0.59 Sit(m²)/ asse Air W) lectric nmHg mmAq La	volum power -225r -3060 Qs	0.64 ne(m³/m (kW) mmHg mmAq La	-250r -3400	0.68
Туре	77 200	其空度 Vacuum pressure 可per 1000	-50m -680n Qs 0.60	mHg nmAq La 0.23	-75m -1020 Qs 0.56	mmAq La	-100r -1360 Qs 0.52	nmHg mmAq La 0.31	-125n -1700 Qs 0.48	nmAq La 0.35	-150n -2040 Qs 0.44	0.50 mmHg La 0.40	485 Cs La: -175r -2380 Qs 0.40	D.55 进以 Suct 所识 Req mmHg	#: かは ion-phi in 力(ki aired ei -200r -2720 Qs 0.36	0.59 Sek(m²) ase Air W) lectric mmHg mmAq La 6.48	-225r -3060 Qs	0.64 ne(m³/n (kW) mmHg mmAq La 0.52	-250r -3400 Qs	0.68
Туре	Bore 11/ ₃ B	有空度 Vacuum pressure 可 1000 1250	-50m -680n Qs 0.60 0.77	mHg nmAq La 0.23	-75m -1020 Qs 0.56 0.73	mmAq La 0.27	-100r -1360 Qs 0.52 0.69	nmHg mmAq La 0.31 0.40	-125n -1700 Qs 0.48 0.65	omHg nmAq La 0.35	-150n -2040 Qs 0.44 0.61	0.50 mmHg mmAq La 0.40 0.51	-175n -2380 Qs 0.40 0.57	0.55 思址 Suct 所识 Req mmAq La 0.44	445 (ボンジ) 4 (ion-phi (ボンジ) (ボンジ) (ired ei -200r -2720 Qs 0.36 0.53	0.59 Secondary of the control of the	-225r -3060 Qs 0.32 0.49	0.64 ne(m³/m (kW) mmHg mmAq La 0.52 0.67	-250r -3400 Qs	0.68
Туре	Bore 11/ ₃ B	京立度 Vacuum pressure 新 1000 1250 1500	-50m -680n Qs 0.60 0.77 1.03	mH _K nmAq La 0.23 0.30	-75m -1020 Qs 0.56 0.73 0.99	mHg mmAq La 0.27 0.35	-100r -1360 Qs 0.52 0.69	nmHg mmAq La 0.31 0.40	-125n -1700 Qs 0.48 0.65	mHz nmAq La 0.35 0.48	-150n -2040 Qs 0.44 0.61 0.86	0.50 mmHg mmAq La 0.40 0.51	485 Cs La: -175r -2380 Cs 0.40 0.57 0.82	0.55 思域 Suct 所以 Req mmAq La 0.44 0.57	445 8: 5:14, ion-phi 3: 7:16 aired e -200r -2720 Qs 0.36 0.53	0.59 Sit(m²) asse Air W) lectric nmHg mmAq La 6.48 6.62	-225r -3060 Qs 0.32 0.74	0.64 ne(m³/m (kW) mmHg mmAq La 0.52 0.67	-250r -3400 Qs 0.45 0.69	0.68 nmH _E lmmAq La 0.73
Type	Bore 11/ ₃ B	賞を変 Vacuum pressure 到 取 1000 1250 1500 1750	-50m -680r Qs 0.60 0.77 1.03	mHg nmAq La 0.23 0.30 0.34	-75m -1020 Qs 0.56 0.73 0.99	mmAq La 0.27 0.35 0.40 0.47	-100r -1360 Qs 0.52 0.69 0.94	nmHg mmAq La 0.31 0.40 0.47	-125n -17000 Qs 0.48 0.65 0.90	omHg nmAq La 0.35 0.48 0.54	-150n -2040 Qs 0.44 0.61 0.86	0.50 0.50 0.60 0.51 0.61 0.69	485 Cs La: -175s -2380 Gs 0.40 0.57 0.82 0.98	0.55 Suct Frish Req mmAq La 0.44 0.57 0.67	445 状态MA con-ph/h がカな -200m -2720 Qs 0.36 0.53 0.54	0.59 0.59 ase Airwhy olectric mmHg mmAq La 6.48 6.62 0.74 0.83	-225r -3060 Qs 0.32 0.49 0.74	0.64 ne(m³/n (kW) mmHg mmAq La 0.52 0.67 0.81	-250r -3400 Qs 0.45 0.69	0.68 nmH _E lmmAq La 0.73
Type	11/ ₃ B (40A)	京空度 Vacuum pressure 計画 1000 1250 1500 1750 1000	-50m -680m 0.60 0.77 1.03 1.14	mHg nmAq La 0.23 0.30 0.34 0.40	-75n -1020 Qs 0.56 0.73 0.99 1.11	mmAq La 0.27 0.35 0.40 0.54	-100- -1360 Qs 0.52 0.69 0.94 1.08	mmAq La 0.31 0.40 0.47 0.54	-125n -17000 Qs 0.48 0.65 0.90 1.04	mmAq La 0.35 0.46 0.54 0.61	-150n -2040 Qs 0.44 0.61 0.86 1.01	0.50 nmHg mmAq La 0.40 0.51 0.61 0.69	485 Qs La: -175n -2380 Qs 0.40 0.57 0.82 0.98	0.55 避以 Sucta 所以 Req nmHg La 0.44 0.57 0.67	445 秋	0.59 0.59 0.59 0.60 0.60 0.60 0.60 0.60 0.74 0.63 0.98	-225r -3060 Qs 0.32 0.74 0.91	0.64 ne(m'/m (kW) mmHg mmAq La 0.52 0.67 0.81 1.06	-250r -3400 Qs 0.45 0.69	0.68 mmHg mmAq La 0.73 0.88 0.98
Type	11/ ₂ B (40A)	其空度 Vacuum pressure 1000 1250 1500 1750 1000	-50m -680r Qs 0.60 0.77 1.03 1.14 1.18	mHg La 0.23 0.30 0.34 0.40 0.57	-75m -10200 Qs 0.56 0.73 0.99 1.11 1.10	mmAq La 0.27 0.35 0.40 0.47 0.54	-100r -1360 Qs 0.52 0.69 0.94 1.06 1.02	nmHg La 0.31 0.40 0.47 0.54 0.63	-125n -17000 Qs 0.48 0.65 0.90 1.04 0.94	mmAq La 0.35 0.46 0.61 0.71	-150n -2040 Qs 0.44 0.61 0.86 1.01 0.86	0.50 mmHg mmAq La 0.40 0.51 0.61 0.69 0.80 1.00	485 Qs -1750 -2390 Qs 0.40 0.57 0.82 0.98 1.12	0.55 进域 Suct 所以 Req mmHg La 0.44 0.57 0.67 0.89	445 状态MA かかが かかが 2002 -2002 -2720 Qs 0.36 0.53 0.78 0.78 0.70 1.84	0.59 Sit(m*) sse Air W) lectric nmHg La 6.48 6.62 0.74 6.83 0.98 11.22	min) Volum power -225/ -3060 Qs 0.32 0.49 0.74 0.91	0.64 ne(m²/m //kW) mmHg mmAq La 0.52 0.67 0.81 0.90 1.06 1.32	-250r -3400 Qs 0.45 0.69 0.88	0.68 mmHc mmAq La 0.73 0.88 0.98
Type	11/ ₂ B (40A)	京空度 Vacuum proseure 到 即 1000 1250 1500 1750 1000 1250 1500	-50m -680r 0.60 0.77 1.03 1.14 1.18 1.52	mHg La 0.23 0.30 0.34 0.40 0.45 0.57	-75m -1020 Qs 0.56 0.73 0.99 1.11 1.10	mHz mmAq La 0.27 0.35 0.40 0.47 0.54 0.68	-100r -1360 Qs 0.52 0.69 0.94 1.08 1.02 1.36	mmHg La 0.31 0.40 0.47 0.54 0.63 0.79	-125n -1700 Qs 0.48 0.65 0.90 1.04 1.28 1.64	mHz La 0.35 0.46 0.61 0.71	-150n -2040 Qs 0.44 0.61 0.86 1.01 0.86 1.20	0.50 mmH _E mmAq La 0.40 0.51 0.69 0.80 1.00	485 Os La: -1756 -239: Os 0.40 0.57 0.82 0.98 0.78 1.12 1.48	0.55 Suct 所以 Req 0.44 0.57 0.76 0.89 1.11	445 株 S M S M S M S M S M S M S M S M S M S	0.59 Selom's asse Air W) lectric mmHg mmAq La 6.48 6.62 0.74 0.83 0.98 1.22 1.42	min) Volum power -225/-3060 Qs 0.32 0.49 0.74 0.91 0.62	0.64 ne(m²/n nmHg mmAq La 0.52 0.67 0.81 1.32	-250r -3400 Qs 0.45 0.69 0.88	068 mmHg immAq La 0.73 0.88 0.98 1.43 1.66
Type SSR -40VT	11/,B (40A) 2B (50A)	系空度 Vacuum pressure 1000 1250 1500 1750 1000 1250 1500 1750	-50m -680m Qs 0.60 0.77 1.03 1.14 1.18 1.52 1.88 2.35	mHg La 0.23 0.30 0.34 0.40 0.45 0.57 0.68 0.62	-75n -1020 Qs 0.56 0.73 0.99 1.11 1.10 1.44 1.80 2.27	mmAq La 0.27 0.35 0.40 0.54 0.68	-100r -1360 Qs 0.52 0.69 0.94 1.08 1.02 1.36	mmHg La 0.31 0.40 0.47 0.54 0.63 0.79 0.93 1.12	-125n -17000 Qs 0.48 0.65 0.90 1.04 0.94 1.28 1.64 2.11	mmAq La 0.35 0.45 0.54 0.61 0.71 0.90	-150n -2040 Os 0.44 0.61 0.86 1.01 0.86 1.20 1.56 2.93	0.50 nmH _E nmAq La 0.40 0.51 0.61 0.69 1.00 1.17 1.42	-175n -2380 Qs 0.40 0.57 0.82 0.78 1.12 1.48 1.95	0.55 過以 Req 0.44 0.57 0.76 0.89 1.11 1.29	445 状态网 phin phin phin phin phin phin phin phin	0.59 0.59 0.59 0.59 0.60 0.74 0.83 0.98 1.22 1.42	min) Volum power -225/-3060 Qs 0.32 0.49 0.74 0.91 0.62	0.64 ne(m²/n nmHg mmAq La 0.52 0.67 0.81 1.32	-250r -3400 Qs 0.45 0.69 0.88	068 mmHg immAq La 0.73 0.88 0.98 1.43 1.66
	11/4B (40A) 2B (50A)	京や液 Wacusum 1000 1250 1500 1750 1500 1750 1500 1750 1500 1750 1000	-50m -680r Qs 0.60 0.77 1.03 1.14 1.18 1.52 1.88 2.35	mHg La 0.23 0.30 0.34 0.40 0.45 0.57 0.68 0.62	-75m -1020 Qs 0.56 0.73 0.99 1.11 1.10 1.44 1.80 2.27	mHz mmAq La 0.27 0.35 0.40 0.54 0.68 0.81 0.97	-100r -1360 Qs 0.52 0.69 0.94 1.08 1.02 2.19 1.10 1.63	mmHg La 0.31 0.40 0.47 0.54 0.63 0.79 0.93 1.12	-125n -17000 Qs 0.48 0.65 0.90 1.04 0.94 1.28 1.64 2.11	mHz La 0.35 0.46 0.54 0.61 0.71 0.90 1.05 1.27	-150n -2040 Qs 0.44 0.61 0.86 1.01 0.86 1.20 1.56 2.93	0.50 mmHg mmAq La 0.40 0.51 0.69 0.80 1.00 1.17 1.42	485 Cs La: -175c -2380 0.40 0.57 0.82 0.98 1.12 1.48 1.95 0.80	0.55 避时, Req mmAq La 0.44 0.57 0.76 0.89 1.11 1.29 1.57	445 #: SIA ion-ph/h/202 ired e -200r -2720 Qs 0.36 0.53 0.78 0.94 1.40 1.87	0.59 0.59 0.59 0.59 0.60m ³ 0 0.60m 0.648 6.62 0.74 0.83 0.98 1.22 1.42 1.42 1.48 1.70	min) Volun power -225r -3060 Qs 0.32 0.49 0.74 0.91 0.62 0.96 1.32 1.79	0.64 ne(m²in (xW) mmHg La 0.52 0.67 0.81 1.06 1.32 1.54	-250n -3400 Qs 0.69 0.88 0.88	0.68 0.73 0.73 0.88 0.98 1.43 1.86 2.92

Aipu Yixing Aipu Air System Equipment Co., Ltd

(13771572002 183426306@qq.com aipukqdl.com

Yixing Yicheng Street Hardware Electromechanical City, Phase I, Block 5, District 3, 8071